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DEFORMATION OF COMPLEX STRUCTURES
ON MANIFOLDS WITH BOUNDARY II: FAMILIES
OF NON-COERCIVE BOUNDARY VALUE PROBLEMS

RICHARD S. HAMILTON

In this paper we develop the machinery necessary for the theorems in
Deformations of Complex Structures on Manifolds with Boundary I. How-
ever these results hold in very general circumstances. We have relied heavily
on the important paper [5] by J. J. Kohn and L. Nirenberg. The main work in
this paper consists in rederiving their estimates with careful attention as to
how the bounds depend on the coefficients of the linear problem. We have
found it convenient to state the theorems not in terms of a first degree
quadratic form but instead in terms of the associated second degree linear
operator. Note that our self-adjoint elliptic operators are self-adjoint only in
the sense of symbols, i.e., the highest order terms. We have included some
sections on spectral theory which will be useful in constructing universal
families; this approach was introduced by Kuranishi in [6].
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PART 3. SELF-ADJOINT ELLIPTIC BOUNDARY VALUE PROBLEMS

3.1. Definition
Let X be a compact manifold with boundary 98X, and let F be a vector
bundle over X and P, Q vector bundles over 0X, each equipped with a
hermitian inner product { , >. We consider an elliptic boundary value
problem
&: C®(X; F) » C*(X; F) ® C=(3X; P) ® C~(3X; Q),

&f = (Ef, pf, 2f),
where E: C®(X; F)— C®(X; F) is a linear partial differential operator of
degree 2, and p: C*(X; F)— C®@X; P) and g: C*(X; F)— C®@X; Q) are
linear partial differential operators at the boundary of degree O and 1. Then
E, p, q have principal symbols oz(§): F— F, g,(§): F|oX — P and ¢,(¢):
F|3aX — Q which are homogeneous polynomials of degrees 2, 0 and 1. Note
that o, = 0,(£) is independent of £ since p has degree 0. We write

Dog(&;m) = ii_f)%[os(g +m) — ax(§)]/1

for the derivative of the symbol. Note we take the derivative only in the
£-directions and not in the x-directions. Since p and g have degrees 0 and 1,
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we do not need their derivatives, for

Da,(m) =0, Doy(&m) = o,(n).

We say that E is a self-adjoint elliptic boundary value problem if the principal
symbols og, o,, o, satisfy the following conditions with respect to the hermi-
tian metrics on F, P, Q (here » is the unit normal covector):

(1) o.(%) is positive-definite, i.e.,

{og(&)f, f> >0 iff#*0and ¢ 0.
(2) 6-(£) is hermitian symmetric, i.e.,
Cog(8)f, 8> = <[, ox(§)g>-

(3) o (0)f, g7 = <0,f, 0,8> + {0, (»)f, 0,(¥)g>-
(4) If o,f = 0 and 6,g = 0, then for all real 5
{Dog(v; n)f, 8> = o (v)f, o,(m)g) + Lo ,(n)f, o ,(r)g>.

(5) dim F = dim P + dim Q.
We remark on the meaning of these conditions. The first makes E strongly
elliptic, and the second makes E essentially self-adjoint, i.e., if we choose a
volume element ¥ on X and form the inner product

&f gy = fx<f, g) av,

then KEf,g» = «f, E*g» for all f and g with compact support in the
interior of X, and E* — E has degree 1. The third condition guarantees that
we can integrate by parts to find a hermitian bilinear form Q(J, g) such that

KEf, g» = Q(f, 8 when gf = 0 and pg = 0.

The fourth condition assures us that Q can be chosen to be essentially
hermitian symmetric, i.e., if Q*(f, g) =0(g,f), then Q — @* involves no
product of first derivatives. Of course Q is still not unique. The fifth condition
assures us of the right number of boundary conditions.

3.2. Integration by parts

Here we justify the previous remarks. Let K, = Ker o, and K, = Ker ¢,(»).
If f € K, N K, then {og(»)f, f) = 0 by (3) so f = 0 by (1). Therefore

o, Do, (v): FIOX > P & Q

is injective, and is also surjective since dim F = dim P + dim Q by (5). We
have a direct sum decomposition F|3X = K, @ K,. We choose coordinates
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{f!,- - -, fm) for the bundle F agreeing with this decomposition. Thus
={f:f*=0forl1 <a</}
={fif=0for{+ 1< w <m}.

In general we adopt the convention that «, B, vy are restricted to 1 < a </
while ¢, ¥, w are restricted to /+ 1 < w < m. Latin indices i, j, k are
unrestricted, i.e., | € i < m. We also choose coordinates {x, yl, - - ,y"} for
X so that X = {x > 0} and 3X = {x = 0}. We can easily make » = dx and
dV =dx dy'- - - dy"Weletr,s, t denote indices 1 < r < n fory.

The boundary operators will now be of the following form, for the
appropriate choice of bases in P and Q:

" " " af“’ f"’ af"
= N = - + e ..,
pfr=r5 4o + gy % 4 B

where dots denote terms of lower degrees. The hermitian metric will have
local representatives h; consisting of A4, #,,, and h_,. By a proper choice of
the basis in F we can make A,z = §,5 and h,, = §,; however 4., 5 0 in
general since K, and X, may not be orthogonal.

The operator E has the form

ij bir a%fj + irs azfj
Yo T Va9 He

Ef =

When we integrate by parts it is clear that the c-terms will cause no problems
since they involve only tangential derivatives; therefore we neglect them and
relegate them to the dots. We have

«Ef,g» = [ [ Efgh.av

Sf{iZe e
Then

ox?

We write a;, = a'h, and b} = b/'h,.
i i

B8y = [ [ e 58" + by

The hypothesis (1) that oz (£) is hermitian symmetric with respect to h
guarantees that g; and b; are hermitian symmetric:

a; b; —b’

] J"‘J

ghav + - - -

Condition (3) says that
Sox(v)f. &> = <o,f, 0,8> + <o, (v)f, 0,(v)g>.
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In local coordinates o,f = { f*}, o, (v)f = { f“} and
(oe(»)f, 80 = a,fF
= a,0f°8" + 4, fF° + a,f%3F + a, f7E".

Therefore condition (3) implies that a, is the representative of the metric on
P, and g, is the representative of the metric on Q, while a,, = 0 and

Ay = 0.
What does condition (4) say? If » = dx and 3" = &’, then

Dog(v; "1')} = bji”
(Dog(v; n")f, 8) = bifg",
o (n")f° = g’f* + g2f°,
0, (f* = f*.
If o,f = 0 and 6,g = 0, then f* = 0 and g# = 0, so
{Dog(v,n")f, 8> = b, f*3".
Moreover the metric <, > on Q is given by g, so
o (n")f, o, (v)g) = a,,q5T*8",
(o,()f, 0,(n")g> = a,,qTf'g.
Therefore condition (4) says
b = Gpug” + 4,35

We now proceed with the integration by parts. We must integrate

Za
f Y OF° 25 0" o
ff[""al T a8 Tl g T AT a8
2a 2
P 0F g O H° 5. ., S 7
+aﬁa g bawaarg bﬁaa g bnpuaar v

into an essentially hermitian symmetric bilinear form, using the boundary
conditions gf = 0 and pg = 0; so we have

CIAN | A A
I +q) 8y + g7 ay,—O on 4X,

g#=0 onox.

First observe that a,, =0 and g, =0 by condition (3), so we can
eliminate these terms. Next since g# = 0 on 39X, we can transfer §/9x or
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d/dy” onto g” with equal ease; therefore the terms

[fa IS :ﬁa”f‘

2
fa r ayv =8
ff > 9xqy r8 »8 axay’g do
all can be integrated by parts into essentially hermitian symmetric bilinear
forms. We are left with only two terms with a_,, and b, as coefficients. Since

we can ignore the terms of lower orders, we may treat the coefficients as
constants. Using the boundary condition for f

ffa"’“%g_ww=ff"wéa;{%—j:+4$’§£7+qa gf;}""dV
—.[f aww{qfraiay 9 a{; }E“’a’V
,f* ) 9g*
—_ff [ +qf gf*'q‘fw}%

oft o938
+ff"¢“{qf'3;+q; ax}ay' av.

[z

is hermitian symmetric, so we may ignore it. We are left with two expressions

of* 8 _ ofY 95
ery = 2 2 __=2_
.[f Gpudy {3x dy” 9" ox v

Now

We deal with the second expression first. This differs from a hermitian
symmetric expression by the conjugate expression

- .| 9r° 9g*  of“ 3z
ery 2 e 2
f.[ Ypuda { dy" Ix dx dy” av.
But 2* = 0 on 09X, so this can be integrated by parts into an expression of
lower degree (i.e., transfer 3/0x off of g and then 9/9y” onto g in the first
term and then it cancels with the second).

Now for the first expression (the one with q,), the second term plus its
conjugate will equal a hermitian symmetric expression. Therefore we can
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replace the first expression by the equivalent expression

[ lons + gV

But we also have the b, expression

[ e v = [ 5 av

As we saw before, condition (4) says

blu = Gudl’ + adZ,
so these two expressions cancel. This completes the proof of the integration
by parts.

3.3. Norms

We introduce the Sobolev norms || f]|, for f € C*(X; F) which measure
the L, norm over X of f and its partial derivatives of degree n or less. We also
introduce norms |f|, and |f|,_,/, for sections f € C*°(3X; F|3X) defined
only on the boundary. The norm |f|, is just the Sobolev norm on 3X which
measures the L, norm over 9X of f and its partial derivatives of degree n or
less in directions tangent to the boundary only. The norms |f|,_,,, can be
defined in local coordinates using the Fourier transform and the multiplier
(1 + |»)"~'/2. There is an equivalent and more useful definition, which is
that for integer n > 1, [f],_, , is just the norm || f1l,, of the best extension f of
ftoallof X

| fla=ry2 = inf{ | fll;: f €C=(X; F) and fl3X = f}.

Since expressions with norms invariably involve arbitrary constants, we adopt
the convention of Kohn and Folland:

Vi(f) S Vo(f) means 3C, VS, V' (f) < CVy(f).
In case of more terms we say
V() < Vo(f) + V3(f) means 3C,, 3G, VS, Vi(f) < GV,(f) + CV5(H).

Note that if V,(f) becomes negative, we may need C; larger than C,.
We have the relation

Ifln—lslf]n l/2~|f|

More precisely one can show by interpolation methods that

|f|n 1/2~|f| lfln 1» |f|islf[n+l/2|fln—l/2'
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We do not need this good a result; all we use is that (for n > 1)
Ve > 0,3C, |fl,—1/2 < &lfl. + Clflo
We can find a continuous linear extension operator
T: C*(0X; FlaX) — C2(X; F)
such that Tf|dX = f and
1Tl S | flaz1/2
for all integers n > 1. More generally, let

%: C*(X; F) = C*(3X; F|9X)

be a linear partial differential operator at the boundary whose symbol is
Ua/an(g) = {(v)1,
where v is a vector field pointing outward at dX, i.e., with »(v) = 1 where » is
an outward normal cotangent vector field. We call 3/dn a normal derivative,
since we can always choose a coordinate chart on X and a vector bundle
chart on F such that 0/9n is exactly the normal derivative in local coodinates.
Then we can choose a continuous linear extension '
T: C®(0X; F]aX) & C®(3X; F|oX)— C*(X; F)
such that T(g, h)|dX = g,3/9nT(g, h)|0X = h, and
N17(g, )ln S| 8larjz ¥ |Ala3/2
for all integers n > 2.

On the other hand, we can approximate as closely as we wish in || |,
without any restriction on the normal derivative.

Lemma. Given any f € C®(X; F) and any h € C?(0X; F|0X) we can find
a sequence f; € C*(X; F) such that f|0X = f,(3/0n)f, = h and || f, — f|, >0
asj— co.

Proof. It is enough to verify the lemma when f = 0, and # has compact
support in a local coordinate chart. Choose a chart with coordinates {x,
yL---,y"} on X and {f',---,f™} on F so that 9/dn becomes 9/dx.
Choose a sequence of functions g;(x) such that g(x) =0 for x > 1/j,
0 < @/(x) < 1 for all x, g(0) = 0 and ¢(0) = 1. Put fi(x, y) = g(x)h(y). Itis
then clear that f|dX = 0, (3/9n)f, = & and || f|[;, = 0 as claimed.

3.4. Coercive boundary value problems

Let &f = (Ef, pf, gf) be a self-adjoint elliptic bound value problem as
described in §1. We say & is coercive if satisfies a coercive estimate or



DEFORMATION OF COMPLEX STRUCTURES 417

Gérding’s inequality

13 S ReKERFY + I fII3

for all f with pf = 0 and ¢f = 0. This has several well known consequences.
For every integer n > 2 we have estimates

N flln S UEfllnez + 1Pflacrya + @ lacssa + 11 fllo:
The map
&5: C*(X; F) - C°(X; F) @ C°(3X; P) ® C=(3X; Q)
has finite dimensional kernel and closed range with finite codimension. We

can solve Ef = g, pf = h, g¢f = k if and only if g, A, k satisfy a finite number
of linear relations of the form

L&Y + <) + <k k) =0,
where y € C°(X; F),n € C°QX; P),x € C*(@X; Q) and

Kgvy =/ [<avav, <h,'n>=fax<h,n> ds, <k,x>=j;x<k,~>ds,

where 4S5 is the “surface area” on dX with dV = dS A »r. Moreover the
classical Fredholm alternative holds.
Lemma. If & is a coercive self-adjoint elliptic boundary value problem then

dim ker & = codim Im &.
Hence in particular if & is injective then it is also surjective.
Proof. Since & is self-adjoint it follows from §2 that we can integrate by
parts to obtain an essentially hermitian symmetric bilinear form Q(f, g) with

KEf,g» = Q(f, g) when ¢f = 0 and pg = 0.

Moreover from the construction it is clear that there are boundary linear
partial differential operators

P’ C®(X; F) » C~(dX; P) of degree 1
q: C2(X; F) » C=(dX; Q) of degree 0
such that
KEf, g» +<p'frg> +<df. 48> = Q(/, 8)-
Hence also
Kf Eg)y +<pf,p'gy +<df, 98> = Qs.f) >
and R(f, g) = O(f, g) — O(g, f) contains no product of derivatives. Thus
R(f, 8) = KLf, g» + Kf, Mg,
where L and M are linear partial differential operators of degree 1:
L, M: C*(X; F)— C2(X; F).
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Thus we have the formula

K(E+ L)f,g» +<{p'frg> +af.qdg>
=KL (E+ Mgy +<pfp'g> +<qf a8
Let
b.f=((E+ L), pf, of), &uf=(E+ M), pf, 9f).

Then &, and &,, are also coercive self-adjoint elliptic boundary value
problems. Let
index & = dim Ker & — codimIm &.

Since &, &, , &,, all differ only by operators of lower degrees, it is a classical
result of Fredholm theory that they all have the same index. Therefore index
& = 0 follows from the relations

dim Ker &, = codim Im&,,, dim Ker &,, = codimIm &, .

By symmetry it suffices to prove only the second. Suppose g € Ker &,,. Then
(E+ M)g=0,pg=0,9g=0s0

KE+ L), g» —<pf,r'g>+<4qf.qdg> =0

for all f. Thus (g, —p’'g, ¢'g) defines a linear relation on Im &, . Conversely
suppose (g, —h, k) defines a relation on Im &,, so that

K(E+ L), g» —<pf,h) +<df, k) =0
for all f. Then

KAE(E+ M)g) +<pfpg—h> +{a k- qg
~<p'frg> +<q'f . 98> =0
for all f. If f has support in the interior of X, then {f, (F + M)g» = 0. This
forces (E + M)g = 0. Now pf, 4'f, p’f, gf can all be specified arbitrarily at
9X. Thus pg = 0,492 =0, p'g = h and ¢'g = k. Hence g € Ker &,, and the
linear relation is of the form considered before. Thus there is a 1-1 correspon-
dence between Ker &,, and linear relations on Im &,, so

dim Ker &,, = codim Im &,

as we asserted before.

We still have to show that p, p’, g, ¢' are independent as claimed. The
following assertions are clearly equivalent since dim F = dim P + dim Q:

(a) the map '

pPp ©qg®q: CX; F)
S C2(X; P)D C(X; P) D C(X; 0)® C=(X; Q)
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is surjective;

(b) the maps

0, D0, FoX > P @ Q, 0,(v)@o,(»): FIoX>P®Q

are isomorphisms;

©ifpf=0,pf=0,9f=0, gf =0, then f = 0 and 9f/0n = 0 on 9X.

We prove (¢). If pf = 0,p'f = 0,gf = 0,¢'f = 0, then

KE+ L), g» =«f (E+ M)g)
holds for all g. Moreover we can find two boundary linear partial differential
operators of degree 1:
r, s: C°(X; F) - C®(0X; F|oX),

so that

K(E+ L)f, gy +rf,gd> =K (E+ M)gH + {f, s8>

holds for all f and g. In local coordinates
iazfj Sk O -
CE+L)fgy =] [a7 58 dV+ == a3 BhdS+: -,

so 0,(v) = og(¥). By symmetry o.(v) = o:(v) as well. Since a.(») is invertible,
g and sg are completely arbitrary on 9X. Thus, if pf = 0, p’f =0, gf = 0 and
g'f =0, we must have f =0 and rf = 0 on 3X. But again since og(») is
invertible we must have f = 0 and df/9n = 0 on 9X. This proves the assertion

(©).

3.5. Persuasive boundary value problems

Let &f = (Ef, pf, gf) be a self-adjoint elliptic boundary value problem as
defined in §1. A coercive estimate or Géarding’s inequality,

I1If < ReKEL £ + 1 flig

when pf = 0 and gf = 0, is very strong and fails in certain interesting cases.
Nevertheless many of the important results are still valid, if we have instead a
persuasive estimate or subelliptic inequality,

s S ReKELFY + 1115

when pf = 0 and gf = 0. Such an estimate occurs for example in 3-Neumann
problem by a clever integration by parts. The consequences of such an
estimate are discussed at length by Kohn and Nirenberg {5]; we give a brief
review of their argument since we shall shortly need to rederive their main
estimate with uniform bounds in terms of the coefficients.

Theorem (Kohn-Nirenberg). Let &f = (Ef, pf, qf) be a self-adjoint elliptic
boundary value problem as defined in §1, satisfying conditions (1)~(5). Suppose
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& satisfies a persuasive estimate or subelliptic inequality

|f15 < ReKEL £ + 11F113
when pf = 0 and gf = 0. Then
b:C°(X; F) - C°(X; F) ® C°(3X; P) ® C°(3X; Q)
has finite dimensional kernel and closed range with finite codimension; moreover
dim Ker & = codim Im &.

The first step is to integrate by parts as in §2 to obtain an essentially
hermitian symmetric bilinear form Q(f, g) with

KEf,g» +<p'f,pg> +<qf, 98> = O(f. 8).

Then the persuasive estimate says

|/l S Re Q(£, 1) + 1115
when pf = 0 and gf = 0. Observe that now it is unnecessary to require gf = 0.
For given any f € C*(X; F), we can find a sequence f; according to the
lemma of §3 such that || f; — f||; = 0, £]JoX = f and the normal derivatives
(3/3n)f, = h for any given A. Since o,(v) is surjective, for an appropriate
choice of 4 we will have gf; = 0 for all j. If pf = O, then pf, = 0 also. Apply
the persuasive estimate to f;;

|55 < Re Q(£, £) + 515
Since || f; = fll, = 0, surely Q(f, f) = Q(f, f)- Therefore | fI; S Re O(f, /) +
| £1I3 when pf = 0 without any restriction on gf.
Let v be a vector field on X. We can choose a linear partial differential
operator V of degree 1:
V:C®X; F)— C2(X; F)
with symbol o V(§) = &(v)l. This determines V up to an operator of degree 0.
If v is tangent to the boundary of X, then by restriction
V: C®(3X; F|9X) — C=(dX; F|oX).
In this case, by changing V by an operator of degree 0 we can make V
preserve Ker p, so that pf = 0=V pf = 0. It is sufficient for this to construct
V in local charts where Kerp = {f: f*=0 for 1 <a </} and patch
together with a partition of unity. We call such an operator V a simple
operator. Notice that there are enough simple operators so that we can find a
finite number of them V,, - - -, V, with
n N
175 < 2 219G
k=0 ;=1
Let V be a simple operator. Then pf = 0=pVf=0=- - - = pVf = 0.
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Hence if pf = 0, we can apply the persuasive estimate to V7f;

[Vfl3 < Re Q(V%, V) +| V.
At this point Kohn and Nirenberg [5] perform a careful shifting of derivatives
to transform Re Q(V’, V) into Re Q(f, V*f) with only small error terms.
In particular they prove the following result.

Lemma (Kohn-Nirenberg). Let Q(f, g) be an essentially hermitian symmet-
ric bilinear form of degree 1 in f and g. Let V be an operator of degree 1 with
symbol 6 V(§) = §(v)] where v is a vector field tangent to 3X. Then for any n

[Re Q(V7, V) — (-1)"Re Q(f, V)| S | fIf3

Assuming this result for the moment, we complete the derivation of the

main a-priori estimate. Assume pf = 0, gf = 0. Then pV?*f = 0 as well, so

O(f, V*f) = KEf, V¥f).

Since V is a differentiation parallel to the boundary, V(») = 0. Therefore V
will have an adjoint operator V* of degree 1 such that

KV*f,g» +Kf,Vg» =0
for all f and g without restriction at the boundary. Thus

KEf, V¥ = (1)K V*Ef, Vf ).

Now
[KV*ES, V1 < |EFLLLIL s

so also

[O(Sf, VO < VEFl fll e
Then by the Lemma of Kohn-Nirenberg

1Q(V, VA S WEFI N fNl, + 1LAI2

Therefore

IVF3 < EFIlN fIl + 1LFH2

Summing over a finite number of V

2 s VEFlLIAIL, + LA
when pf = 0 and ¢f = 0. Hence

For any elliptic operator Ef the Dirichlet boundary conditions f|oX are
always coercive. Thus

1A ln S WEflmz + [ flarzz + 1 fllo
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by Gérding’s inequality. But
Ve > 0,3C, |fla-12 <éelfln + ClSlo
Therefore
|fla-1/2 < eCUESI, + 11 f1l,) + ClSflo
If1lx < eCUESl, + [ f1l,) + ClEfll—2 + Clifllo + ClSflor
If eC < 1/2, we have
Iflln < eClEfll, + CIEfll,_2 + Clifllo + Col flo-

But Ve > 0, 3C, with

I Efllne2 < el Efll, + ClLEf llor
and |[Efllo < C| fll,- Thus

Al < eClEfN, + CISll2 + 1 flo)-

But V7 > 0,3C, with

1Az + [flo < 2l flln + Cll fllo-

Choose n so small that C,n < 1/2. This makes 7 a function of ¢, so we can
write C, for Cn. Then Ve > 0, 3C, with

Ll <elEfll, + Cll fllo
when pf = 0 and ¢f = 0. In particular
1. S UEf, + 1 Sllo

when pf = 0 and gf = 0. (We need the better version with any ¢ > 0 at one
point in discussing the spectral theory.)

It is now easy to obtain an estimate in the case of inhomogeneous
boundary data. Recall that pf, p’f, gf, ¢'f uniquely determine f|0X and 9f/9n.
Therefore we can find two linear partial differential operators ¢ and ¥ on dX,

@: C®(3X; P) ® C°(dX; Q) — C®(3X; F|oX),
Y: C2(3X; P) ® C=(3X; P) @ C*(3X; Q) & C~(3X; Q)

— C*(3X; FJoX),
where @(h, 1) is of degree O in 4 and /, and Y(4, j, k, I) is of degree 1 in k& and
! and degree 0 inj and & such that if f]oX = (A, /) and of/on = Y(h, j, k, 1),
then pf = h, p'f=j, gf = k, ¢f =1 Now let T be a continuous linear
extension

T: C2(3X; F|oX) @ C°(dX; FJoX) — C*(X; F)
as described in §3, so that if 7(x, v) = f, then f|0X = » and 9f/0n = v. Let
f = T(p(h, I), ¥(h, j, k, 1)). Then pf = h, p'f = j, qf = k, ¢'f = I. Moreover
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foreach n > 2
1Al S Vhlamrj2 + Ulamsg + 1klazsje + 1 azij2
If we choose for simplicity to lose half a derivative, then
”f“n 5 ,hln + ljln—l + |kln~l + |1|n
Suppose now that we are given an arbitrary f. Put
= T(e(pf, 0), ¥(pf, 0, 4f, 0)).
Then pf” = pf and ¢f" = gf, while
”f/”rzslpfln + lqﬂn-l' -
Let f= f'+ f”. Then pf” = 0 and ¢f” = 0. Applying the previous a-priori
estimate to f” we have
W1 S WEf N + 1Lf " llo-
Then
1l S NEflln + [Pflasz + |flner + 1| fllo:
This proves the following.

Main a-priori estimate. Let &f = (Ef, pf, ¢f) be a self-adjoint elliptic
boundary value problem. Suppose & satisfies a persuasive estimate (or subel-
liptic inequality)

I3 < KELLY + A5
when pf = 0 and gf = 0. Then for all f without restriction and all n
1A le S HEflly + | Bf| sz + |@flnsr + 1l fllo:
Also we have the more precise estimate
Ve > 0,3C, Vfwithpf =0and gf =0,
1Al <elEfll, + Cll fllo-

Remark. This is not the best possible estimate. With a little more work we
could have proven

112 S VEfllaes + 1Bflasry2 + 1 1ne1y2 + 1 fllor

However it is not clear that there is any advantage to justify the work
involved.

3.6. The lemma of Kohn and Nirenberg
We now prove the lemma which we used in the last section. We state it
again briefly for reference. Recall that V is an operator of degree 1 with
symbol o V(§) = £(v)! for a vector field v tangent to 9X.
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Lemma (Kohn-Nirenberg). If Q(f, g) is an essentially hermitian symmetric
bilinear form of degree 1, then for any n

[Re Q(V7, V7f) — (-1)" Re O(f, V*¥)| S || fI1%

Proof. For any hermitian bilinear form Q(f, g) of degree 1, there is

(uniquely) defined another such form VO(/, g) with
O(Vf,g) + 0(£. Vg) =VO(f. g)

for all f and g. The coefficients of VQ are obtained by differentiating the
coefficients of Q with the operator V (in some sense). If Q is essentially
hermitian symmetric, then so is V Q. Using the above relation we can transfer
derivatives V from one side to the other in Q(V?, V7). In doing so we
generate various terms

vio(v4, V)
with i + j + k = 2n. We call max(J, k) the degree of the term, and i the
raréikc;nsider first the expression
O(V¥Y, f) — 2=1Y"Q(V, V) + Q(f, V*7¥).
We claim we can rewrite this as a sum of terms 3 V'Q(V’, V"f) of degree
max(j, k) <n— landrank2 <i < n+ 1. We have
o(v?, f) = 2(-1y"Q(V7, V) + (£, V*¥)
= VOV, 1) = VQ(VFH, V) + - - -
= (-1)'VQ(VY, V7 Yf) = (-1)"VQ(V*TY, V) + - - -
-VO(Vf, V7)) + VO(f, V"7 f)
=V2Q(V"F f) = 2VQ(VTY, V) + - -
-n(=)"V2Q(V*TYS, VTY) + - -
—2V2Q(Vf, V%) + VIQ(V* Y, f).

Thus we have reduced the expression to a sum of terms of rank i > 2. If we
make a substitution.

VIO(V, Vif) = -ViQ(V/=f, VE*if) + VI+1Q(V/ ™Y, V¥f),
we will obtain terms of strictly lower degrees and equal or greater rank,
provided j > k + 2. A similar remark applies if k¥ > j + 2. Therefore we can
reduce the expression to a sum of terms with { > 2 and either max(j, k) < n
—lor|j— k| < 1. Since i + j + k = 2n, these relations imply max(j, k) <
n — 1. Moreover we do not need to make such a reduction on a term unless
either j or k > n. Therefore, if we only make such reductions when necessary,
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we only generate terms of rank ; < n + 1. This remark will be important later
when we study uniform estimates in terms of the coefficients, as it guarantees
that we do not differentiate the coefficient of Q more than n + 1 times. Now
any term of degree max(j, k) < n — 1 satisfies
V'OV, VI S 11115
We would be done with the proof if O were completely hermitian symmetric.
Since Q@ is essentially hermitian symmetric, the difference form

R(f’ g) = Q(f’ g) - Q(g’f)
involves no product of first derivatives of f and g. Moreover we can write
R(f, ) = R|(f, g) + R,(f, g where R, involves no derivatives of f, and R,
involves no derivatives of g. If we apply the previous argument to Re 0, we
have

Re Q(V*7, f) — 2(-1)" Re Q(V7, V) + Re O(f, V*)| S IIfI15-

We then have to estimate the difference

Re O(V?¥Y, f) — Re O(f, V*Y) =3 {R(V¥Y, f) — R(f, V*¥)}.

We estimate R,(V?Y, f) — R,(f, V*f); the estimate for R, is symmetrical. We
can write

RV, f) — R(f, V) =VR(V*Y, f) = VR(V* ", Vf) + - -
+VR,(Vf, V") — VR\(f, V7).
Further rearrangements produce terms of the form V'R,(VZf, V¥). As before
we can shift V from one side to the other until in each term either j < n and
k<n—1lorelsej = kork + 1, and we can do so without producing a term
of lower i than we start with. Since we have already reduced to i > 1, we
continue to have i > 1. Then, if j =k or k + 1, we will have j < n and
k < n — 1. Moreover if we only make reductions when necessary, then in the
final terms we will have either j = n or k = n — 1 s0 i < n. Therefore we can
rewrite the expression R,(V?f, f) — R,(f, V¥f) as a sum of terms
VR, (VYf, V¥f) with 1 <i < n,j < n, k <n~ 1. Since R,(f, g) has no deriva-
tives on f we have
|R(V?Y, f) = R\(f: VP < I A1
The same holds for R,. This proves that
IRe Q(V7, V) — (-1)" Re O(f, V*7)| S I f11%

as claimed. Moreover we have shown that

Re Q(V7, V) — (-1)" Re Q(f, V*%)
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can be written as a sum of expressions V'Q(V/f, V%) and their conjugates

with 2<i<n+1,j<n—1, k<n—1, and expressions V‘R,(VY, V¥

with 1 <i<n,j<n k <n—1, and expressions VR,(V/f, V¥) with 1 <i
nj<n 1, k < n. We shall need the bounds on i later.

3.7. Elliptic regularization

Let &f = (Ef, pf, gf) be a self-adjoint elliptic boundary value problem
which satisfies a persuasive estimate

|f16 < ReKEf, £ + 1 f1l5

when pf = 0 and gf = 0. Then we have the main a-priori estimate of §5

1)l S HEfln + |2flasz + [@flass + (1 fllo-
It follows that if f € Ker &, then || fli, < || flio for all n. Hence the unit ball
IIfllo < 1 is compact in Ker &, so Ker & is finite dimensional. We wish to
show that Im & is closed and has finite equal codimension. For the moment
we content ourselves with the following special case.

Theorem. If & is injective, then it is also surjective.

Proof. Lletuv,, - - -, v, be vector fields on X tangent to the boundary 39X,
such that every vector field tangent to the boundary is a linear combination
of the v, (with C* coefficients). Let V, be an operator with symbol oy, ¢ =
§(v)l. The norm

AN = SNV + 1115
is independent of the choice of v, up to equivalence. Let » be a vector field on
X which points outward at 3X, with n(¥) = 1, and let 3/9n be an operator
with symbol 6, 5, (§) = &(n). Thus 3/0n is a normal derivative. When we
integrate by parts, we get

KEf, g» = Q(f, 8)
when gf = 0 and pg = 0; and the form Q has the form

d d
0N = [ [{esr)gnt 5af) + - ¥,

where the dots denote terms with at most one normal derivative. Since oz(»)
is hermitian symmetric and positive definite, we must have
af |f°
a

< Re Q) +| oL | 1At + A

which implies

171} = Re O(£.f) + AR,
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since || fl; < 13f/3n|| + [l f]il,- Then
11} < ReKEf, £ + NI I,

when pf = 0 and gf = 0. It follows that & is coercive if we have

ILfIE < ReKEL £ + 11 £II5,

when pf = 0 and gf = 0. Let V* be the adjoint of V, and put C = -3 Vv,
+ I Then Cf, ) = Z(IVfllg + I f1lg = ll f1ll}- Moreover oc(§) = = &),
50 6.(v) = 0 and Do(v; n) = 0 for all u, because ¥(v;) = 0 since the v, are
tangent to the boundary.

Therefore for any e with 0 < e < 1

b.f = (Ef + &Cf, pf, 4f)

is a self-adjoint elliptic boundary value problem satisfying (1)-(5) of §1. If &
satisfies a persuasive estimate

If16 < ReEf, £ + 11 fllg

(when pf = 0 and ¢f = 0), then the persuasive estimate

|f12 < ReKEf + «Cf, £ + I fI3

{(when pf = 0 and gf = 0) holds uniformly in 0 < ¢ < 1, i.e., with constants
independent of ¢. Consequently the main a-priori estimate

1flln S WEf + eCflly + | 2flaaz + [ @f]nar + 11 fllo

will also hold uniformly for 0 < e < 1.
However, for any ¢ > 0 we have

LI} < ReKEf + eCf £ + Il

when pf = 0 and gf = 0. Thus &, is a coercive problem for e > 0.

Suppose now that & is injective and satisfies a persuasive estimate. We
claim that &, will also be injective for all ¢ sufficiently small. For suppose
not. Then we can find a sequence ¢ — 0 and f, € Ker &, with [ fillo = L
From the uniform main a-priori estimate we have || £ |, < Cil fillo = C with
a constant independent of k. By passing to a subsequence we may assume
fi = f- Then by continuity f € Ker &, and | fijo = 1 so f# 0, which is a
contradiction. Therefore &, is injective for ¢ sufficiently small.

But &, is coercive, so by §4 it is also surjective. Let ¢, — 0 be a sequence
and let f, be the unique solution of

Ef, + ¢Cf, =g, onX,
pf = h, onoX,
gl =J, onodX,
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for any given g, 4, j. From the uniform main estimate
Illn < CUl &l + Blpsz + Ulasr + (1 fillo)

with a constant independent of k.
We claim || f, ]l is bounded. For if not, by passing to a subsequence we
would have || [l = o. Then put f, = £, /|l fillo- We would have

N flln < CUIEN, + |lpsa + 1ilas)/ I fdlo + G

s0 || fill, < C. Then by passing to another subsequence we would have f, — f.
Then Ef = lim Ef, + ¢ Cf, = limg/|| fillp = 0, and likewise pf = 0 and ¢f =
0. But || f;”o =1 50 ||fllo = 1. This contradicts the hypothesis that & is
injective. Therefore the || £, are bounded.

Inserting this in the uniform main estimate, we have || f,|[, < C for all n,
independent of k. Therefore, by passing to a subsequence, we have f, — f.
Then by continuity

Ef=g,pf=h g =]
This proves & is also surjective.

3.8. Spectral theory
Let &f = (Ef, pf, gf) be a self-adjoint elliptic boundary value problem.
Then for every complex number A € C so is &,f = (f + Af, pf, qf). We say
that A belongs to the spectrum X of & if &, is not invertible.
Theorem. If & satisfies a persuasive estimate

IfRSKELLY + fII3

when pf = 0 and gf = 0, then its spectrum 3 consists of a set of isolated points.
Proof. First note that if Re A is sufficiently large, then when pf = 0 and
gf =0,
15 + 111115 S ReEf + M, f).

Thus &, is injective if Re A is large. Hence the spectrum I lies in a half plane
Re A < p.

Since &, is always invertible for some A, it suffices to prove that T is a set
of isolated points when & is invertible. Write §f = (£, 0, 0). Then &, = & +
Ad.LetT, = &' o &,,and T = &'9. Then

T,=6"(6 +A9) =9 +AT.

Notice that Tg = f is the unique solution of Ef =g, pf =0, gf = 0. The
operator T is a map T: C®(X; F)— C®(X; F) which by (the more precise
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version of) the main a-priori estimate satisfies
Ve >0, 3C, VG

172l <ellgll, + Celigllo-

Fix any suitably large value of n, and let L])(X; F) denote the completion of
&®(X; F) in the norm || ||,- By the previous estimate, T extends to a
continuous linear map

T: L}(X; F)—> L}(X; F),
and in fact 7 is compact. Therefore by the classical Riesz theory, the operator
T, = I + AT is invertible for all but a discrete set = of numbers A € C. Note
that = C Z. For if &, is not invertible, then it is not injective, and if f, lies in

the kernel of &,, then f, is smooth (by definition since C®(X; F) is the
domain of &,) and hence f, € L}(X; F) all the more; and

Tuh = Tuh = 66,4 =0,
so f, also lies in the kernel of 7y and 7, is not invertible either. This proves

that the spectrum = of & is discrete.
The harmonic space H, is defined as H, = ker &,, or

Hy, = {h: Eh + Nh = 0,ph = 0, gh = 0}.
We define the eigenspace 1?,‘ as the smallest subspace such that
Eh + M€ H,,pf=0,¢f =0=h € H,.

Theorem. If & satisfies a persuasive estimate, then each ﬁk is finite
dimensional.

Proof. Again by a translation we may assume & is invertible, and set
T, =1+AT = &8, with T = &'9. Recall that T extends to a compact
linear map T: L}(X; F)— Lj(X; F). By the Riesz theory, each eigenspace

= {f € L}(X; F): T =0 forsome k}
is finite dimensional. Let
K, = {f € C*(X; F): T{f = 0 for some k}.

Then clearly K, C K, and hence is also finite dimensional. We claim H, C
K,. For1fEf+}\fEK,‘, pf=0,4f=0, thenéxf-—(Ef+}\fpf af) € $K,,
so &6\ f € & 14K, or T,f € TK,. But T(K,) C K, so T,f € K,, which
implies f € K,. Thus K, has the property for which H, is minimal, so
H,‘ - K,\ Thus H,\ is also finite dimensional.

The complement of the spectrum X is called the resolvent set = = C — =,
It is open and omits a discrete set of points. &, is invertible for all A € =°.
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Lemma. If & is invertible, then for all n sufficiently large
1Al S UEflln + |Pflasa + |@flasy-
Proof. We already know
[flla S UEfln + |Pflasa * |@flnss + [ flloe
Therefore it suffices to show that

1 fllo S UEfllx + |Pfleswr + |aflisn

for some k. If not, we can find a sequence f; with || fll = 1, but Ef, -0,

Pf;— 0 and gf, — 0. Then || f]|,, < C for all n, so by passing to a subsequence

we have f, — f for some f. Then Ef =0, pf =0, ¢f =0, so f € ker &. But

[ fllo = 1, so f # 0. This contradicts the hypothesis that & is invertible.
Theorem. The resolvent

R: Z¢ X {C®(X; F) ® C*(0X; P) ® C*(8X; 0)} —» C(X; F)
defined by
RMN)(g, h, k) = &'(g, h, k)

is complex-analytic in X and linear in (g, h, k).
Proof. First we claim that R is continuous. It is sufficient to prove that if
0 € Z¢, then R is continuous in a neighborhood of 0. By the previous Lemma

[ flla < CUEf . + [Pflasz + |@flnsr)
Therefore
i, < CUES + Mo + {Pflasz + 1@flas) + CAIAlL,
When [A] < e withe =1 C,
Wflla < CUES + Ml + | 2flasz + 19f]41)
with a constant independent of A. Then
IR & b, k)|, < C(ll gl + |Blpsa + 1K)
with a constant independent of A for all » sufficiently large. Now
&y {RA) — R(w}&, = &, — &, = (r —N)9,
where §(f) = (f, 0, 0). Thus
R(A) — R(p) = (= DRMN)IR(p),
which together with the previous estimate proves R is continuous. Moreover
R(A + 8) — R(A) = -8R(A + 8)IR(N).
Therefore
DR(A) = ;%[R(A +8) — R(A)]/8, DR@A) = -R(N)ISRQ).

Hence R is continuously differentiable in the complex sense, so surely R is
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analytic. (All these formulas are to be understood as being applied to a fixed
(g, h, k) which we omit from the notation for simplicity.)

Now assume & is not invertible, and let vy be any path in the resolvent set
¢ enclosing the origin. Let

N=fR(A)i1}\ﬁ, o= [ RO ar

Lemma. We have the following relations:

Nob +06%=1 NGN=N,
5N+ %o=1 0% =g,
6N =0, 66N =0,
N% =0 N&o=0.
As a consequence if w = 09 and p = Yo, then 7 and p are projections

2 2 __
=7, =0

such that Ker & CImwandKerp CIm &.
Proof. The first two are trivial. For example

N& + oS _f R(A)fg'—+fR(>\)§ dA

= [ RO[E +rs] R (R

The others follow from the identity
1
RMN)SR(p) = x‘_—#{R(#) - RN}

Let y' be a curve close to y but inside, let A € y and p € y’. Then for
example

oS0 =ff’R(>\)§R(p) du dA

=LJ;’A—-1—E{R(M) - R(A)}dpdk=fyR(u) du= o,

since [, dA/(A — p) =1 and [, du/(A ~ p) = 0. The others are proved in
the same way.
Lemma. Ifyis a path in the resolvent set enclosing the origin, then
pN(g’ A k) =1, qN(g, h, k) =
Consequently
pN§ =0, gNg =0.
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Also
pe =0, go=0.

Proof. Observe that from the definition of R(A)

Now N = [, RQA)dA/A and o = [, R(\) dA. The result is immediate.
Lemma. H, C Im 7.
Proof. Recall that H; is the smallest subspace such that

Ef€ H, pf=0, ¢f=0=f€ A,
Suppose f is such that
Ef€Imm, pf=0, of =0.
Then &f = 9g where g = Ef, so mg = g. Then using the previous relations
N&f= Nlg=NYng =Nb%o39g =0, f=N&f+ af = =f,

so f € Im = also. Hence Im # has the property for which 1-70 is minimal, so
}70 C Im .

Theorem. If y contains no eigenvalue other than 0, then ﬁo =Im #.

Proof. Choose a subspace S complementary to 1-70; this is surely possible
since dim H, < co. Then C®(X; F) = S & H, We write f € C®(X; F) as
f=s+ hwiths € Sandh € 1?0. The quotient semi-norm ||#/S ||, = inf{{|s
+ hfjx: s € S} is in fact a norm, and all norms on a finite dimensional space
are equivalent, so || A]|, < ||s + A, Then also ||s||, < |ls + A,

Lemma. For some m and all A sufficiently small, if h € 1?0, then

l2llo S A" ER + Mo,

Proof. E takes the finite dimensional space 1;70 into itself. Therefore the
above estimate holds for all A sufficiently small, ie., if m = dim H,, since
det(E + Al) =A™ on H,,

From the main a-priori inequality

”f”n S “Ef”n + lpf|n+2 + ,qfln+l + ”f“O'
This implies that for all A sufficiently small
M. S NES+ Afil, + |Bflasz + [@f]ar + 11 fllo

with a constant independent of A.
Lemma. For all X sufficiently small and n sufficiently large,

“s”n S ”ES + M”n + Ipsln+2 + lqsln+l,

when s € S, with a constant independent of A.
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Proof. By the previous estimate it is only necessary to show that for some
k

sllo S 1l Es + Asfl, + |P5|k+2 + [g5|p 415

then the Lemma will hold for n > k. If this were false, we could find
sequences 5; € § and A, — 0 with ||s;llg = 1, Es; + A5, =0, ps; - 0 and ¢gs; -
0. By the previous estimate we would have ||s;||, < C for all n. Hence passing
to a subsequence we would have 5; —»s € S. Then by continuity Es =0,
ps=0,gs=0s0s € Hoalso But S N H0 {0} sos = 0. But |s;]lp, = 1s0
[Islio = 1. This is a contradiction. Hence the lemma must be true.

Lemma. For all X sufficiently small and for some k,

lIsilo + Allo S NEs + As + hll, + | psless + 185]k4

foralls € Sand h & I;Vo; with a constant independent of A.
Proof. Suppose not. Then we could find sequences A, 0,5, € S, h; € Ho
with ||s;[lo + ||A;]lo = 1 and

Es;+ As; + b —0, ps;—0, gs;—0.

Since Ho is finite dimensional and ||4]l, < 1, by passing to a subsequence we
may assume k; - h € Ho Then Es; + }\s — h also, so Es + }\sj, PS;> gs; are
all bounded. By the previous Lemma we have lIs;ll. < C for all n. Then by
passmg to another subsequence we may assume s; — s € §. By continuity
= h,ps =0,gs =0.Since h € Ho, this implies s € H0 from its definition.
But SN Ho {0}, so s =0. Then A =0 also. But ||s;flo + [|Allo =1, so
IIslle + l|2llo = 1. This is a contradiction. Hence the Lemma must be true.
We apply this Lemma not with s and 4 but with s and Eh + Ah, for if
h € H,, then Eh + M € H, also. Thus for all A sufficiently small and for
some k,
lisllo + IER + Ahllg < ||Es + Eh + Mllg + |PS|ias + |98kt
Now given f € C(X; F) write f= s + h with s € S and h € H,. We saw
before that |is||, < |l fllx- Since & € H,, we have ph =0 and gh =0, so

pf = ps and gf = gs. Also Es + Eh + Ah = Ef + Af — As. Therefore for all A
sufficiently small and for some k,

lisllo + IER + Ahlig SHEf + M + Al Sflx + [2flesz + [@flisre
Also |[hljo S AT"||Eh + Akl
Sl SUEf + Mlia + Bflavzs + 1@ lnsr + | fllo

and || filo < lIsllo + l|#]lo- Combining these, when A is sufficiently small (so we
can ignore CA|| f|, by subtraction when CA < 1/2) and r is sufficiently large
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(i.e., n > k) we have

1A Na SNTNES + Ml + 1 2flasz + 19flaer}-

Let us write
(g B DN = 118lln + Hlpsz + lper-

Then we have shown the following.
Lemma. For all \ sufficiently small, all n sufficiently large and some m we
have

£, < CAT &SI
Recall that RQA) = &;'. The above estimate shows that

IR g, A DN, < CAI(8 B )l

for all A sufficiently small. Therefore when m is large enough, A”R(}A) is
continuous at A = 0. Hence by the removable singularities theorem it is
analytic at 0. This proves the following result.

Theorem. R(\) has only poles for singularities. If m is large enough, then
A™R(A) is analytic at 0, and if v is a curve enclosing no point in the spectrum
except 0, then

f A™R(A) dA = 0.

Y

This accomplished, we return to the proof that ﬁo = Im 7. Let
o™ = | A"R(A)dA.
I

By the previous theorem, 6™ = 0 when m is large enough. Also 6°= ¢
defined before. Let 77 = 6™9. Then #™ = 0 when m is large enough and
#° = 7 defined before.

Lemma. Ezx™ + ™% = 0 for all m.

Proof.

Ex™ + a7+l = f EA"R(A)SdA + f A7+IR(N)S dA
Y Y
= f A™(E + AI)R(A)S dA = f A™ dX = 0,
Y Y

since (E + AI)RA)S = L
Corollary. E7z = (-1)"=™ for all m.
Lemma. Forallm
PE™m =0, gE™ = 0.
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Proof. We have
pR(A)YY =0, 4gR(A)I =0
from the definition of R(A) and 9. Therefore

prm = f A"BR(A)S dA = 0,
Y

gn™ = f A7gR(N)S dX = 0.
Y

But E™r = (-1)"%"™, so the result follows.

From the results we see that if # € Im #, then pE™h = 0 and gE™h = O for
all m, and E™h = 0 for some m sufficiently large. Therefore h € I:?o. This
proves }}0 = Im 7.

Now we characterize Im p.

Lemma. The map § defines by restriction an isomorphism

$:Im 7 — Imop.
Thus Im p = {(h, 0, 0): & € H,).

Proof. Since $7 = p§, we have $(Im #) C Im p. Since § is one-to-one, so
is its restriction. Since p = Yo, if (g, b, k) € Im p, then (g, b, k) €EIm I so
k=0 and k = 0. Moreover (g,0,0)=p(g,0,0)=p%g = 9%7g so Imp C
$(Im 7). Thus 9: Im 7 — Im p is an isomorphism as claimed. It follows that
Im p is finite-dimensional, and in fact has the same dimension as Im = = ﬁo.

Corollary. If & is a self-adjoint elliptic boundary value problem which
satisfies a persuasive estimate, then & has closed range with finite codimension.

We stated this result back in §7. Since &N + p = I, we can solve &f =
(g, h k)by f= N(g, h k) if p(g, b, k) = 0. Since Im p has finite dimension,
Ker p is closed with finite codimension, and Im & D Ker p (it may be larger).

Moreover E(ﬁo) - 190 so E(Im #) C Im 7. Therefore Ex = wE7 and

&7 = $Enw = $7En = pSEm = pbm,
which shows & maps Im 7 into Im p:
&:Im 7 —Im p.
Moreover Ker & C Im 7 and Im & 2 Ker p. Therefore
index & : C*(X; F) - C®(X; F) ® C*(QX; P) ® C°(X; Q)
must be the same as the index of
&:Im 7 —Imop.

But this index is 0 since Im # and Im p have the same dimension, being
isomorphic under §. Therefore we have shown the last part of the theorem in
§7.
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Corollary. & has index 0, i.e.,
dim Ker & = codim Im &.
We have a decomposition of C*(X; F) as a direct sum

C*(X; Fy=Ima ® Ker 7.
We have already seen that Im 7 = H, is the smallest subspace such that
Ef € Hypf =0,¢f = 0= f € H,
We define Ii’o to be the largest subspace such that
g€ Ky=>3f € K, withEf =g,pf=0,4/=0.

Theorem. Kerz = Ii’o.
Proof. Kerw =Im N& which is the complementary projection. More-
over

ERMA)S = § — ASRN)S = SR(V)G,

SO
ENS = {gR(x)g ng(x)g-—_ §NG.

Let g€ Keraw. Then g = N&g, so g = INbg= &NYg. Put f= NYg.
Then #f =0 and &f = 9g. Hence g € Ker 7 = 3f € Ker 7 with Ef = g,
pf = 0, gf = 0. This shows Ker 7 has the property for which 120 is maximal, so
Kernm C 12'0.

Unless Ker 7 = 12'0 we would have a nonzero f° € ﬁ N 12'0 Then we can
solve for an f' € K, with Ef1 f°, pf1 =0, qf' =0, and then f' € H, as
well, by the definition of Ho, so fl € Ho N Ko Continuing in this way we
find a sequence f™ € H, N K, with Ef™ = f”' . Then E™f = f°. But E takes
H0 into itself, and the restriction E: H0 - H0 is nilpotent, i.e., E "’]H0 = 0 for
large m. Thus f° = 0.

Since there is nothing special about the eigenvalue 0, we have the following

general result.
Corollary. Let H, be the smallest subspace such that

Ef+M € B, pf =0,¢f =0=f € H,,
and let K, be the largest subspace such that
g€k, >3 €k, with Ef+N=gpf=0,gf=0.
Then C2(X; F) = H, ® K, and dim H, < .
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PART 4. FAMILIES OF ELLIPTIC BOUNDARY VALUE PROBLEMS

4.1. Definition
Let M be another vector bundle over X, and m € C°(X; M). We consider
families of linear partial differential operators whose coefficients depend
smoothly but nonlinearly on m, and if we wish also on its derivatives of
degree up to some number r. Let

E: UCCX; M) X C°(X; F)—» C°(X; F) ® C°(3X; P) ® C(3X; Q)
be a family of elliptic self-adjoint boundary value problems; thus
&(m)f = (E(m)f, p(m)f, ¢(m)f),

where E(m)f is a linear partial differential operator of degree 2 in f on X, and
p(m)f and g(m)f are linear partial differential operators of degrees 0 and 1 in
f on 98X, whose coefficients depend smoothly on m and its derivatives up to
some degree r. We assume that E(m), p(m), g(m) satisfy the conditions
(1)-(5) of §2.1. Thus we can find a family of hermitian metrics {, >,, on F, P
and Q whose coefficients depend smoothly on m and its derivatives up to
degree r, such that for all real cotangent vectors £ and 1 and any positive
normal cotangent vector »,

(1) <Opm(®, o > 0if f# 0and & # 0,

@3] <OE(m)(§)f’ 8>m =<1, oE(m)(g)g D>

3 <°E(,,.)(V)f 2 80m = <op(m)f > Op(m) & Pm T <°q(m)(”)f > oq(m)(v)g>m?

@ If 0,y f = 0 2nd 0, g = O, then

<D°E(m)(1’§ Tl)f, &om = <0q(m)("7)ﬁ Uq(m)(")g>m
+ <oq(m)( V)f; Uq(m)(‘ﬂ)g >m’

(5)dim F = dim P + dim Q.

Suppose that dV,, is a volume element which may also depend smoothly on
m and its derivatives up to degree r. Form the inner product,

B Dm = 2 Eom AV .
<f,89m= [ [ <S8
We say & satisfies a uniform persuasive estimate if for allm € U,

11§ < ReKES, £, + I F13

when p(m)f = 0 and g(m)f = 0, with constants independent of m and f.
We suppose 0 € U and think of U as a small neighborhood of 0. We write

H(m) = {h: E(m)h = 0,p(m)h = 0, g(m)h = 0}.
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Since E(m)f, p(m)f, g(m)f are nonlinear partial differential operators, the
map & is a smooth tame map in the sense of [2].

Theorem. Suppose & satisfies a uniform persuasive estimate, and H(0) = 0.
Then H(m) = 0 for all m in a (possibly smaller) neighborhood U of 0, and
hence each linear operator & (m) is invertible; moreover if we define

&1 (U C C=(X; M)) X (C*(X; F) ® C*(3X; P) ® C~(3X; Q)
— C®(X; F)
by letting & Y(m)(g, h, k) = f be the solution of &(m)f = (g, h, k), then the
family of inverses &' is a smooth tame map.

4.2. Moser estimates

We derive estimates for nonlinear partial differential operators. These were
first proved by Moser and are crucial for the Nash-Moser inverse function
theorem. They are proved using interpolation inequalities and a close ex-
amination of the chain rule. These inequalities motivate the abstract defini-
tion of a tame map in [2].

We let || f||,, denote the L, norm of f and its derivatives up to degree n. We
let [[m]], denote the supremum of f and its derivatives up to degree n. Thus
| ||, is the norm on the Sobolev space L7(X), and [[ ]j, is the norm on the
classical space &"(X). However our results are all for C* functions. The
following interpolation inequalities are standard.

Interpolation theorem. If & < i < n, then

f1l: S AR/ By fjfr= /=),

[[m1] S[m Lm0

For simplicity we discuss estimates for m in a neighborhood of 0, of the
form [[m]], < &. Of course the same will be true in a neighborhood of any .

Moser estimate 1. Ler P(m) be a nonlinear partial differential operator of
degree r in m. Then for all m in a neighborhood [[m]], < € of zero we have
estimates ‘

[[P(m)]], s[[m]],., +1-

Proof. For simplicity we take m and P(m) to be real-valued; the same
argument works in a vector bundle. We have

P(m)=o(m,---,D%m,.- ), |a| <,
where @ is a smooth function

(v, -, %)
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defined in a neighborhood of some compact set K = {|y*| < ¢,}. On K every
derivative of ¢ is uniformly bounded. Moreover we can find an ¢ > O such
that if [[m]], <e, then |D°m} < e, for |a| < r.

We are required to estimate the supremum of derivatives of P(m) of degree
up to n. By the chain rule each such derivative is a product of a derivative of
¢ (with respect to the y*) times derivatives D# of the arguments D°m. As
remarked before, the derivatives of ¢ are uniformly bounded for [[m]], <e.
Moreover any product of derivatives of m which occurs is of the form

Dfitay, pBhteay, . .. Dhtay,
with |o| < rand | 8| + |B,| + - - - +|B;] < n. The supremum of the prod-
uct is the product of the suprema. Therefore we must estimate the products

[[”‘]]aﬁb.[[”‘]]aﬁb; T [[’"]]aﬁbk

with max @; < rand X b; < n. By interpolation if a + b > r, then

(] ]avs SN [m] ],
and always [[m]], < ¢ is bounded. Therefore each product is bounded by
([m]],+, + 1, since Z(a; + b, — r)/n < L.
Moser estimate 2, Let L(m)f be a partial differential operator, nonlinear of
degree r in m and linear of degree s in f. Then for all m in a neighborhood
[[m]], < & of zero we have estimates

I LS S W fllwss +[[m]],, s

Proof. We can write L(m)f as L(m) » j*f, where j*f is the sth jet extension
of f, L(m) is a nonlinear partial differential operator of degree r in m with
values in a bundle of linear maps of the jet bundle into another bundle, and *
denotes a bilinear bundle product. (This is to say in local coordinates

L(m)f = X L(m)D%,
lal<s

where L, (m) is a nonlinear operator of degree r in m which is the coefficient
of a derivative of f.) Then by the product rule

ILmfl, s 2 [[LM]] N 4s

i+j=n
By Moser estimate 1,

and by interpolation

(1], SLIm L LTI

W las S WA AU =D/,



440 RICHARD S. HAMILTON

and [[m]], < e is bounded, so

2 [[m] ] M las S 1 lnes + [[m]],0 M1l

i+j=n
WL(m)fl, S Wflhwas +[[m]],, I F1Ls

Moser estimate 3. Ler P(m) be a nonlinear partial differential operator of
degree r in m. Suppose P(0) = 0. Then for all m in a neighborhood [[m]], < e of
zero, we have estimates

[(Ptm]], =[[m]],e e

Proof. The derivative DP(m)f is again a partial differential operator,
nonlinear in m and linear in f, of degree r in each. By the fundamental
theorem of calculus

P(m) = P(0) + fo ' DP(tm)m at.

By Moser estimate 2 we have

”DP(tm)m”" S[[m] ]n+r’
(that is, we have [[m]],., + [[tm]],. [[m]], but [[m]], <e& is bounded and
0 <t < 1). Integrating this gives
12N, S [[[m]],0, dS[[m]],.,

Moser estimate 4. Let L(m)f be a partial differential operator, nonlinear of
degree r in m and linear of degree s in f. Suppose L(0)f = O for all f. Then for
all m in a neighborhood [[m]], < & of zero we have estimates

VLNl S[[m] ] s +[[m]],, A1l
Proof. Again write L(m)f = L(m) *jf. Then L(0) = 0. Using Moser
estimate 3 and the product rule, we obtain

| L(m)f)l, _ 2 [[L(m)]],-”f”j+s 5' 2 [[m]]i+,|lfllj+s'
i+j=n i+j=n

Using the previous interpolation inequalities and since n — i =j and n — j
= |, this is
ifn ifn i i/n
s 2 [[m]L0LIm T Ay
i+j=n

S[[m] 10 nss +[[m]],0 e
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4.3. Coercive families

The theorem of §1 is particularly easy to prove for coercive families.
Moreover we need the uniform Garding inequality even for the persuasive
case (when we argue from the Dirichlet problem). Therefore we argue first for
the coercive case. We consider equations of degree 2 to preserve continuity in
the notation, but these results are completely general.

Let & (m)f = (E(m)f, p(m)f, g(m)f) be a family of boundary value prob-
lems:

&: (U CC(X; M)) X C°(X; F)
— C®(X; F) ® C°(3X; P) ® C~(3X; Q),

where E(m)f is a linear partial differential operator of degree 2 in f, and p(m)f
and g(m)f are linear partial differential boundary operators of degrees 0 and
1, all of which have coefficients which are smooth functions of m and its
derivatives up to degree r. Suppose that & (0)f = (E©)f, p(0)f, ¢(0)f) is a
coercive elliptic boundary value problem (in the sense of Agmon, Douglis and
Nirenberg). Then so is & (m)f = (E(m)f, p(m)f, g(m)f) for all m in a neigh-
borhood U of 0, since coercivity is equivalent to a certain matrix formed from
" the coefficients being invertible. We prove a generalization of Girding’s
estimate which gives the dependence of the constants on m.

Garding-Moser estimate. Let &(m)f = (E(m)f, p(m)f, q(m)f) be a family
of coercive elliptic boundary value problems of degree 2, whose coefficients
depend smoothly on m of degree r. Then for all m in a neighborhood [[m]], < &
of zero we have estimates

[ fln S VE(m)fll oz + | P(M)fl a2
+lg(m)fl,_3/2 + ([[m]]n+r + D)l Sfllo-
Proof. By Garding’s inequality for m = 0
1 fll2 S 1EQ)Sllo + 12(0)fls /2 + |g(0)f1y 2 + Nl fllo-
By Moser estimate 4
|E(m)f — EQ)fllo [ [m]],IIfll>-
We can find an operator P(m) on X with p(m)f = P(m)f|0X. Then
|p(m)f — p(O)fl3,2 S | P(m)f — P(O)f]},
s[[m] ] flz +[[m]], 0 Fllo
Likewise if g(m)f = Q(m)f|9X then
la(m)f — q(0)f], 2 S 12(m)f — QO]
S[[m] ]l + [[m]],, A1
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By interpolation if 0 < j < n

[[m]0, o 1 laey S[[m] 1S + [ [ 1], 4 1l

Therefore we have the estimate
I Al S WE(m)fllo + |p(m)fls)2 + l@(m)f]y ),
+[[m]LUA0 + ([[m]],10 + DIfllo

If [[m]], < e with & sufficiently small, we can subtract the term [[m]], || fil,
from the other side. This proves the estimate for n = 2.

We proceed by induction on ». Suppose the estimate holds for # as written.
Choose operators V; as in §3.7 on the bundles F, P and Q. For simplicity we
include V, = 1. Then by the induction hypothesis

IVl S NEm)Vif ey + 1 p(m)Vif ey 2 + [g(m) ViS5 o
+([[m]],e, + DIVl

The commutator [E(m), V,]f involves only second derivatives of f with
coefficients depending non-linearly on r derivatives of m and linearly on the
(r + D)st derivatives of m. Hence we can estimate it by

ILEM), Vi) fllaca S ([[m]], 00+ DI +[[m]],,,_ 1 fll2

Since V; involves only derivatives parallel to the boundary, [p(m), V,]f =
[P(m), V,1f13 and [g(m), V,]1f = [Q(m), V ] f]3. Therefore

L2, 9] flamrjp S ([[m]],40 + DSl +[[m]] s 1l

[ q(m), V;1flazsa S ([[m]], 41 + DUAIL. +[[m]],, 01 fllse

Thus we have the estimate
WVl S WE(m)Sf| ooy + | p(m)f a2 + l@(m)fl a2
+ ([[m]]r+l + l)llf”" +[[m]]n+r+1“f”0'

We can solve the equation E(m)f for the second normal derivative 3% /3n?.
Thus we can write
kA
on?
where the 4,(m) are linear operators of degree 1 with coefficients depending
nonlinearly on m and its derivatives of degree r or less. Since [|[E(m)f|l, <
|l £1i; we have

l ]

= 0gm(?)  E(m)f + T A(m)V f,

an?

15 NE(M)Sll,oy + ZHVA N +[[m]],,, - S0

n—
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Then || f)) .4, S Z)Vfll, + 135 /8n?||,_, so we have
1fllase1 S NEM)Sfl ooy + | 2(M)Sf|as1 /2 + l@(m)f] =1 /2
+([[m]]),., + DSl +[[m]],,, 2 21 1l

By interpolation, for every 6 > O we can find a constant C; with

([[m]1],01 * DSl <S[[m]) M lner + C([[m]]),1,0r + DIl

Since [[m]], <e, if we take & sufficiently small we may subtract the term
involving C8([[m]], + 1)|| f|| .., from the left hand side. Then

1 lnwr S NEE) ey + 120 | irj2 + 12 1zr 2
+([[m]]hyer * DI f N

This completes the induction.
Lemma. Suppose &(0) is invertible. Then so is &(m) for all m in a
neighborhood [[m]], , » < €. Moreover

1 fliz = WE(m)fllo + {P(m)fl5 2 + |g(m)fl, /2
Proof. From the standard coercive theory, if & (0) is invertible, then
1712 S IEQ)fflo + 1p(O)fl3/2 + [a(O)f 1y /2 |
Again we have

| E(m)f — EQ)fllo S[[m]],1 12

|p(m)f — p(0)fl3,2 < I1P(m)f — P(O)f|l,
s{[m] ] +[[m]],.,1 fllo

lg(m)f — q(0)f], /2 S 1 @(m)f — Q(O)f),
S[[m]) 0 +[[m]], . e

The sum of all these is < [[m]], .|| fil,- Hence if [[m]],,, <& with ¢ suffi-
ciently small, we have

I fllz S WE(m)flle + | p(m)fls /2 + lg(m)fl; o

This shows & (m) is injective if [[m]], ., < ¢. But &(0) is an isomorphism, so
its index is zero. By Fredholm theory &(m) also has index 0, so if it is
injective then it is surjective as well.

Write (g, &, k)|, = | glln~2 + 1Al,—1/2 F |k|,—3/,- Combining the lemma
with the Garding-Moser estimate, we see that if & (0) is invertible, then for all
m in a neighborhood U of 0 we have the estimate

WA, S 08, +[[m]],, NES e

This proves the following.
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Corollary. Let & be a family of coercive elliptic boundary value problems. If
& (0) is invertible, so is &(m) for all m in a neighborhood of the form
[Im]l], ., <& Uof0, and the family of inverses

& (R C C2(X; M)) x (C°(X; F) ® C~(3X; P) ® C=(3X; Q))

- @(X; F)
is a smooth tame map, where & (m)(g, h, k) = f is the unique solution of
E(m)f = g, p(m)f = h, g(m)f = k.

Proof. That & is tame is guaranteed by the estimate. That &~ is smooth
and all its derivatives are tame follows automatically; see [2, Theorems 5 and
6].

This done, we turn our attention to the non-coercive case.

4.4. Normalizing the first boundary condition
The first step in the proof of the theorem in §1 is to simplify the problem to
the case where the boundary condition p(m) is independent of m. We do this
as follows.
Fix a smooth normal cotangent vector field ». The map

op(m) & Uq(m)(l’): FlaX—) P D Q
is an isomorphism by condition (3). Therefore we can choose a family of
vector bundle maps ¢(m): F|0X — F|0X such that
{0 @ 0m)(P)} = {000 @ 0,0)(¥)} © 9(m).

Moreover ¢(m) will be an isomorphism and will depend smoothly on the
values of m and its derivatives up to order r at each point. We can extend
¢@(m) to such a family of isomorphisms over all of X. Thus

¢(m): F> F
induces an operator of degree zero:
p(m): C2(X; F) - C2(X; F).

Then we can regard ¢ as a nonlinear partial differential operator

¢: (U C C°(X; M)) X C°(X; F) - C*(X; F)
of degree r in m, and linear of degree zero in f. Moreover for each m the map
@(m) is invertible; and writing ¢ }(m)g = p(m)'g, we can regard ¢! as
another nonlinear partial differential operator

el (U C C°(X; M)) X C°(X; F) » C*(X; F)
of degree r in m, and linear of degree zero in g. Clearly both ¢ and ¢! are
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smooth tame maps. Moreover by the choice of ¢, p(m) ° p(m) = p(0) since
p(m) = 6, (because p has degree zero in f).
We now define a new family of elliptic boundary value problems:

&(m)f = (E(m)f, 5(m)f, a(m)f),

where
E(m)f = o(m)™' E(m)g(m)f,
B(m)f = p(m)p(m)f,
g(m)f = g(m)gp(m)f.

Then the new system & will still satisfy condition (1)-(5) in the pull-back
hermitian metric

Fr 80m™= Lp(m)f, p(m)§),,.

Also if the old system satisfies a uniform persuasive estimate, then so will the
new system, at least on a neighborhood U of 0, since |@(m)f], < C|f, and
[|<p(m)f]|o < Cnf”o uniformly in m, once m and its first r derivatives are
uniformly bounded; for if we write f= <p(m)ﬂ then p'(m)f = p(m)f, so if
p(m)f = 0 then p(m)f = 0 and

|12 < 1/ < ReKE(m)f, £, + |1 F113
< ReCE(m)o(m)f, o(m)f ), + I1f13
= Rep(m)E(m)f, o(m)f ., + I /11§
= ReCE(m)f, £, +I11 FIi%

Suppose that the new system & has a smooth tame inverse. Then so does
&, namely

&7 (m)(g, h, k) = @(m)o~ (m)(p(m) ', h, k),
since a composition of smooth tame maps is a smooth tame map.

Now in the system & the boundary condition p(m) = p(m)e(m) = p(0) is
independent of m. Therefore we now drop the ~ and assume that p(m) = p
is independent of m.

Next we repeat the derivation of the estimates in the previous section,
paying attention to the influence of m on the coefficients in the estimates.
Integrating by parts as before (using conditions (3)—(5) to transfer derivatives)
we can find a smooth essentially hermitian symmetric bilinear form
O(m)(f, g) whose coefficients are smooth nonlinear functions of m and its
first r + 1 derivatives (since we may transfer a derivative onto a term
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involving m!) such that

Q(m)(f, g) =KE(m)f, gD,

when g(m)f = 0 and pg = 0. Then we will have a uniform persuasive estimate

/I3 S Re Q(m)(£, f) + CIIfIi3

when pf = 0. At first we seem to need g(m)f = 0 also; but arguing as before,
if pf = 0 we can find a sequence f, with pf, = 0 and g(m)f,, = 0 such that
| fe — fll; = 0 as k — o0, and applying the estimate to f, and taking the limit,
we see that the estimate holds for f also, with the same constants.

Now we let V be a simple operator as before. Since p is independent of m,
we can choose V so that pf = 0 = pVf = 0, independently of m. Applying the
uniform Morrey inequality to V7, we have

V75 < Re Q(m)(V7F, V) + (V3
when pf = 0. Now we must consider how to estimate the error term

Re Q(m)(VY, V) — (=1)" Re Q(m)(f, V*¥).

4.5. The uniform Kohn-Nirenberg lemma

In this section we derive an estimate on the error in replacing

Re Q(m)(V'¥, Vf) by Re Q(m)(f, V*%)
paying careful attention to the growth in terms of the coefficient m. This is
done by applying the methods used in the Moser estimates to the Kohn-
Nirenberg lemma.
Consider the bilinear form

Vo(m)(f, g) = Q(m)(Vf, g) + Q(m)(/, Vg).
The form VQ(m) is again of degree ! in f and g and its coefficients are found
by differentiating the coefficients of Q(m) by V. If the coefficients of Q(m)
depend smoothly on m and its derivatives up to some degree r + 1, then the
coefficients of V?Q(m) will depend smoothly on m and its derivatives up to
degree n + r + 1. Therefore we can estimate

V'e(m)(f, )l s ([[m]],,,., + DIfIligl;

Recall that we can write

Re Q(m)(VY, V) — (=1)™ Re Q(m)(f, V*7f)
as a sum of terms VQ(m)( V¥, V¥ with2 <i<n+1landj k <n—1and
i +j+ k =2n, and terms V'R, (m)(V/f, V) with 1 <i <nandj <nm k <n
— 1 and i +j + k = 2n, and terms VR,(m)}V’f, V*) with 1 <i < »n and
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j<n—=1,k<nandi+j+ k=2n, by the argument of part 2 §6. Here
R(m)(f, g) = O(m)([, g) — O(m)(g, f) involves no product of first deriva-
tives, and R(m)(f, g) = R,(m)(f, g) + Ry(m)(f, g) where R, involves R, in-
volves no f-derivatives and R, involves no g derivatives. Hence the coeffi-
cients of R, and R, will also be smooth functions of m and its derivatives of
degree up tor + 1.

We have

VOm) (VY VNI < ([[m]]0,00 + DIAll s
By interpolation
[[m])iaar S 1220 L Im] 105070,
111 S WAL DYA§ =/~ D7D,

1wy < IAUE/ DY flfr =50/,

Choose U small enough that [[m]],,.; < C. Since j+ k=2n—4i,2<i<n
+1L,ji<n—-Lk<n—-1,

(17 ] W tll flliss S[[m] 1972767 0) )1 @n /=1 £ =D/ 2= D)

]
(1m0 es 2 F + ALY

A

Therefore each term

IViO(m)(V, V) < ([[m]],,, .0 1 + A1)

Similarly

VR, (m)(V, VO S ([[m]]1 00 + DTN N

By interpolation, sincej + k=2n— i, 1 <i<n,j<nk<n-1,
(i—-1)/(n—1) (n~d)/(n—1)
[[m]]i+r+ls[[m]]n+r+l [[m]]r+2 ’
AN, S AN~ /=Dy £l =/,
Il S WFIE/C= DY flfr =k D/,
If U is small enough that [[m]],., < C,
(i-1)/(n=1 f+k=1)/(n— i~ 1)/ (n~
[[7] )0 sl A S[[m] ]800 DY fUg R D/ mm ) g =D/ 2D

< ([0 D dl 1+ A1

Therefore for each term

VRV, VI S ([[m] ] adlflh + 1A1)

The same estimate holds for R,. This proves the following result.
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Uniform Kohn-Nirenberg lemma. Ler Q(m)(f, g) be a family of essentially
hermitian symmetric bilinear forms whose coefficients depend smoothly on m and
its derivatives of degree up to r + 1. Let V be a linear partial differential
operator of degree 1 with symbol o V(&) = &(v)] where v is a vector field tangent
to the boundary. Then there is a neighborhood U of 0 of the form [[m]],, ., < ¢
such that for all m in U and all n

[Re Q(m)(V'f, Vf) — (~1)" Re Q(m)(f, V*¥)|
s ([[m]],., .0l + 1F1.)°

with a constant independent of m and f.

4.6. The uniform a-priori estimate

We can now derive the a-priori estimate uniformly in m. Arguing as before
(in 3.6) from where we left off in §4.2,

[V < Re Q(m)(V, VF) + || fI%,
IVfR < Re @(m)(f, V%) + ([[m]],.., .0 f 1 + 111.)"

If pf =0, g(m)f = 0, and V is adapted to the boundary condition p, which
has been made independent of m, then pV?"f = 0. Thus by the choice of
Q(m) we have

Q(m)(f, V¥f) = KE(m)f, V¥¥,,,.
The operator V will have an adjoint V¥ such that for all f and g
LS 8Pm +&V0f, 80m = 0.

In general V} will depend on the metric {, >, on F and the volume 4V, on
X, both of which may depend on m. However we will have V2 =V +a(m)
where a(m) is a linear partial differential operator of degree 0 (ie., a
multiplication operator) whose coefficients depend on m and its derivatives
up to degree r + 1, (since in performing the integration by parts the differen-
tial operator V may land on a coefficient involving m).

Lemma. For all min a sufficiently small neighborhood of 0, the estimate

NVES e S W flpwk +[[m] ], 4,2l Fllo

holds for all n and k.
Proof. We have

la(m)fll, S[[m]],e il Fllo + A1

from a previous lemma. The formula is clearly true for k& = 0; we proceed by
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induction. Suppose the formula holds for some value k. Then

(VDL S HIVE s [ [m] ] s o IV ES Tl
Now || V2fllo < l| fllo and
IVE e S UV flrie + N@(m)fll s

S lsrirr F[[M] ] e s endl Fllor

Therefore

IV O L [ [m] ] eia il o + 1 lnskrrs

which proves the formula for & + 1; and hence the formula holds for all £ by
induction.
Returning to the main argument, we have

KE(m)S, VZF D = KVE(m)f, V' Do
KVWE(m)f, VI ul < IVIE(m)fllol 1l e

By the previous lemma

IV E(m)Sfllo < |E(m)fll, +[[m]],, I fllo-

Combining these facts

V¥R < (LEmflL, + [ [m] ], 00 + ([[m]],., 00+ DALY

For a suitable choice of V|, - - -, V,,

N n
15 < 2 2 IV

i=1 =1
Therefore

1fla S WEm)fll, + 1Al +[[m]],., .0 f1s

for all m in some fixed neighborhood of 0 (independent of n) and all f with
pf = 0and g(m)f = 0.

We remark that now it is no longer necessary to assume the boundary
condition p(m)f is independent of m. For given any general system & =
(E(m)f, p(m)f, g(m)f) we showed in §2 how to construct another system

= (E(m)f, (m)f, d(m)f) such that p(m)f is mdependent of m, and if
f @(m)f then E(m)f = @(m) E(m)f, p(m)f = p(m)f, q(m)f = §(m)f, where
¢(m) is a multiplication operator involving m and its derivatives up to degree
7, and so is ¢~'(/m). Then

1l S 1Al +[[m] ] e U N2 S UAln +[[m]],5, 1 fllo
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The previous estimate will hold for &:

1Al S WEGfil, + 1A, +[[m]],., 4201
We have (using the argument on 9.X)
1Al s 1 Ax +[[m]],, 1 lo
LE(mIL, S NE(m)fll, +{[m]],, I EM)fllo
NIE(m)fllo S I fll2 I fllo S | fllo 20d | flo < | flo
independently of m. Therefore if p(m)f = 0, then

Ul S NESN, + 1 fl. +[[m]],4, 220

Hence the estimate is completely general.

The operator E(m) is elliptic, and the Dirichlet boundary conditions f]3X
are coercive for every elliptic operator. Therefore we can appeal to the
Garding-Moser estimate of §3, and write that for all m in a neighborhood U
of 0 (of the form [[m]], ., < &) we have

1l S NEES sy + 1flacsp + ([[m]],,, + Dilfle
Again we have Ve > 0, 3C,
lfln—l/2 < ’Elfln + Celf‘O'

Combining this with the previous estimate
WA, < CUEm)fll,—a +[[m]],. 1 flo)
+eC(IE(mfl, + Il +[[m] ]+ 2,0 A1)
+Clflo + Cilfllo
We take eC < 1/2; this eliminates || f||, from the right. Also Ve > 0, 3C,
with
NE(m)flln—z < el E(m)fll, + CIIE(m)Sllo-
Note C, does not involve m. Now for all m in a neighborhood of zero
IE(m)fllo < CIIfll
with a constant independent of m. Thus Ve > 0, 3C, with
1fll. <ellE(m)fll, +[[m]],,, . I Al + CAlfllz + | flo)-
But Vn > 0, EC,, with
112 + | flo < 2l fll. + Coll fllo-

Take n with nC, < 1/2. Then n depends on ¢, so we can write C, as C,, which
is still independent of m. This proves the following.
Theorem. Let &(m)f = (E(m)f, p(m)f, q(m)f) be a family of self-adjoint
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elliptic boundary value problems. Suppose & satisfies a uniform persuasive
estimate

|f16 < Re Q(m)(£, f) + || fli5
For all m in a neighborhood of zero we have the uniform a-priori estimate

1f 1 S NEGSI, + ([[m]],4 0z + DI,
when p(m)f = 0 and g(m)f = 0. More precisely we can write Ve > 0, 3C, with

1flln < el ECmSNL, + ([[7]], 40 + CHS I
when p(m)f = 0 and g(m)f = 0.

As before we can deduce an estimate for inhomogeneous boundary condi-
tions. We mimic the argument at the end of §2.5. Let p’(m) and g'(m) be the
complementary families of boundary partial differential operators for p(m)
and g(m). We can find two families of partial differential operators @(m)(h, /)
and y(m)(h, J, k, [) operating on 9X such that if f]0X = @(m)(h, /) and
df/on = Y(m)(h, j, k, ) then p(m)f = h, p'(m)f = j, g(m)f = k, g(m)f = L.
Moreover the coefficients of ¢ and ¢ are smooth functions of m and its
derivatives up to degree r + 1, as in clear from the construction. Then if we
apply the continuous linear extension 7 so that

I = T(e(m)(p(m)f, 0), Y(m)(p(m)f, 0, g(m)f, 0)),
we have p(m)f’ = p(m)f and g(m)f’ = g(m)f. Write h = p(m)f and k =
g(m)f. By the choice of T (and giving up half a derivative at that, to simplify
the argument) we have (when n > 2)

”T(u’ v)”n < luln + Ivln—l'
Thus
1£1l2 < le(m)(h, 0), + [¥(m)(h, O, k, 0)],_,.

Now ¢ and ¢ are families of linear partial differential operators on 9.X, so we
can apply Moser estimate 2 on dX to obtain

lp(m)(h, O, S 1hl, +[[m]],, .|kl
[W(m)(h, 0, k, 0|,y S Al + 1kl +[[m]],, (1A, + |Kl),

recalling that p(h, /) has degree 0 in & and /, while Y(h, J, k, /) has degree 1 in
h and / and degree 0 inj and k. Now

Ip(m)fl, + lg(m)flo S |f1y < 11 Sl
Thus

1, S 1 p(m)f], + la(m)flu_y +[[m]],, .. IS
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and so
1 a2 S 1POR sz + @Sy +[[m]],,, ol Fll2e
Now by Moser estimate 2
HECm N S W Nawz + ([ ] )50y + DI s
LN S lp(m)fly + lg(m)fly + 1 fll2 < 1| fllss
when [[m]],, ; is bounded. Thus
IEm)f N0 S 1p(M) S |ara + 190m)f|pay +[[m]], 4, 5l 15
Let f = f' + f”. Then p(m)f” = 0 and g(m)f” = 0. Thus we have a uniform
a-priori estimate for f”:
1" Mn S WECm)S "1y + ([[7]] 5z + DIS U
Now [l fll, < [f'll. + Ilf"l|, and
NE(m)f"||, < |E(m)fll, + [E(m)f'||,.
Combining these we have
17 1ln = NEGm)fll, + |p(m)f |2 + [@(m)f |y + ([[m]],, 05+ DIlFl

which holds without restriction on f.Now by interpolation

(1)) araa S 152D B
151 < AR/ LA,

(171 ] sl 1l S (L] ], )LD gl )"
On a neighborhood of zero, [[m]],.¢ < ¢ is bounded. Therefore Ve > 0, 3C,
with
[[m]],erasllflls <ellflla + C[[m]],,, el fllo
Taking ¢ > 0 small enough we have
1lla S IE(m)f 1L, + | p(m)f |z + 1@(m)f sy + ([[m]],, 16 + DIl

(Of course 6 is not the best possible.)

Uniform main a-priori estimate. Let & (m)f = (E(m)f, p(m)f, g(m)f) be a
family of self-adjoint elliptic boundary value problems which satisfy a uni-
form persuasive estimate

| /16 < ReCE(m)S, £ D + 1Sl
when p(m)f = 0 and g(m)f = 0. Then for all m in a neighborhood U of 0 we
have

1 £ll. S HE(m)fll, + | p(m)fl ez + la(m)flr + ([[m]] .06 + DIflle
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4.7. Tame families of solutions
Theorem. Let & (m)f = (E(m)f, p(m)f, g(m)f) be a family of self-adjoint
elliptic boundary value problems. Suppose & satisfies a uniform persuasive
estimate

| /I3 < ReCE(m)f, f D + I FII3.

If &(0) is invertible, then & (m) is invertible for all m in a neighborhood of 0,
and the family of solutions

&1 (U C C2(X; M)) X (C=(X; F) ® C=(3X; P) ® C=(3X; Q))
- C=(X, F)

is a smooth tame map, where & '(m)(g, h, k) = f is the unique solution of
E(m)f = g, p(m)f = h, g(m)f = k.

Proof. All we need is the following.

Lemma. Under the above hypotheses we can find a neighborhood U of 0 and
a number ! such that for allm € U

I fllo S WE(m)fll; + | p(m)f] 10z + |g(m)fl -

Proof. Suppose not. Then we could find sequences m; —0 and f; with
i fllo = 1, E(mpf; — 0, p(m)f, >0 and g(m;)f, — 0. By the Uniform main
a-priori estimate we must prove that we would have || f]|, < C for all n. Then
by passing to a subsequence we could assume f, — f. In this case we would
have ||f]lo =1 and E@)f = 0, p(0)f =0, g(0)f = 0. This would make f a
nonzero element in Ker & (0). But & (0) was assumed invertible. This would
give a contradiction. Therefore the Lemma holds.

From the lemma we see that & (m) is injective for Il m € U. But since all
the & (m) satisfy persuasive estimates, if they are injective then they are
surjective as well. Thus & (m) is invertible forallm € U.

Let us write

(g, B )l = 181l + 1Alpas + |K|pay
Then combining the Uniform main a-priori estimate with the lemma we have
£l S NEMSflla +[[m]],,,.6IEmSIl,.
Thus with s = r + 6 and / fixed, for all n

& (m)(8 b k), < (8 ks B, +[[m]],, (g, A Kl

This proves that the family of solutions & is tame. That & is smooth and
all its derivatives are tame follows from general considerations; see [2,
Theorems 5 and 6].
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4.8. Spectral families

Let & (m)f = (E(m)f, p(m)f, g(m)f) be a family of self-adjoint elliptic
boundary value problems which satisfies a uniform persuasive estimate. We
consider the family &, m)f = (E(m)f + M, p(m)f, g(m)f) of self-adjoint
elliptic boundary value problems forA € Cand m € U.

Lemma. We can find a neighborhood U of 0 and ¢ > 0 such that if m € U
and |\| < & then for all n

1 £l S NE(m)f + Mil, + |p(m)f] 0z + [@(m)f] 01
+ ([[m]]n+r+6 + l)anO

Proof. From the uniform a-priori estimate we have

1l S HEmfN, + [P(m)f|,sy + gOm)flsy + ([[7m]],4, 06+ DIlfllo

for all m in a neighborhood U of 0. If |A] <& with & sufficiently small, the
lemma follows.

Lemma. Suppose & (0, 0) is invertible. Then we can find a neighborhood U
of 0, € > 0 and a number | such that if |\| <& and m € U, then &\, m) is
invertible and

I fllo S NE(m)f + M, + |p(m)f],0n + |g(m)f] s

Proof. 1f not, we could find sequences A, — 0, m; — 0, and f, with || fllo =
1 and E(m)f, + Af, =0, p(m)f,—0 and g(m;)f, - 0. From the previous
lemma we would have || f]|, < C for all n. Then by passing to a subsequence,
f,—=f Now [fllo =1, EQ0)f =0, p(0)f = 0 and g(0)f = 0. This contradicts
the assumption that & (0, 0) is invertible. Therefore the estimate holds. This
shows that & (A, m) is injective, which implies that it is also surjective.

Let (g A k)], = llglln + |Al 442 + |k|paq- Then we have shown that if
Al <eand m € U, then for all » and some k and s = r + 6,

1Al S WS, m)fll, +[[m]],, IE6C, m)fll,.

Let £ C C x (U C C®(X; M)) denote the set of all (A, m) for which &(A, m)
is not invertible; X is called the spectrum of the family. Its complement Z¢ is
called the resolvent set; by the previous lemma it is open. Let R(A, m) =
& (A, m)™! be the family of resolvents.

Theorem. The family of resolvents R(\, m) is a smooth tame map

R: Z° X (C®(X; F) ® C?(3X; P) & C~(8X; Q)) = C=(X; F).

Proof. Recall that C is graded Fréchet space in the trivial way ([[A|l, = [A|
for all n). The previous estimate shows R is tame; that it is smooth and all its
derivatives are tame follows from general considerations [2, Theorems 5 and
6].



DEFORMATION OF COMPLEX STRUCTURES 455

Let y be a closed curve in C. The set Z of all m such that (A, m) € Z° for
allA € yisan opensetin U C C®(X; M). We define families of operators

N,0: 2 X (C(X; F) ® C°(3X, P) ® C=(3X; Q)) —» C%(X; F),

N(m) = fy RO, m) 22 o(m) = [ RO, m) .

Theorem. N and o are smooth tame maps.

Proof. We have tame estimates for R(A, m) or any of its derivatives in a
neighborhood of each point (Ay, my). Since v is compact, for any m, € = we
can find a neighborhood U such that the same estimate holds on y X U.
Integrating over y produces tame estimates for N and ¢ or any of their
derivatives.

We let w(m) = o(m)$ and p(m) = $o(m). Then « and p are smooth tame
families of projections. We write Ir?y(m) = Im 7(m). By the theory for a single
operator we see that

ﬁY(m) =3 H,(m)

with the sum ranging over all A inside y with (A, m) € Z. However even if y
contains only one point in the spectrum of & (0), it may contain many points
in the spectrum of & (m), and the nilpotency rank may be higher. Neverthe-
less we have the following result.

Theorem. The spaces ﬁy(m) have constant dimension independent of m.

Proof. One direction is easy.

Lemma. For all m in a neighborhood of 0

dim ﬁY(m) > dim f}Y(O).

Proof. Letf,,- - -, f, bea basis of H,(0). Then =(0)f; = £, so by continu-
ity the w(m)f will be hnearly 1ndependent for all m in a neighborhood of 0.
Thus dim A. (m) > dim A L0).

The other way is a little harder Let H{(m) denote the set of all solutions f
of the equations

[E(m) + M’f =0,
p(m)[E(m) + M1 =0, forO<k<j-1,
g(m)[E(m) + M1 =0, forO<k<j—1
Then ﬁ,‘(m) Ker &(m) + AY and H,‘(m) U 2, H{(m). Moreover we

have H{‘(m) C Hf“(m) and H{\(m) H,\(m) for j large enough. Also H{\(m)
= H{*(m)= H{(m) = H,(m). Thus the sequences of spaces is stable as
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soon as it ceases to increase. Let

Aj(m) = = H{(m)
with the sum over all A inside y with (A, m) € =. Then the same properties
hold for the spaces H’(m) In partlcular we have the following essential fact.

Lemma. Jfdim H’(m) <J, then H’(m) H (m).

Proof. Unless the dimension increases by at least one each time j in-
creases by 1, the spaces become stable.

Now to prove the theorem it is enough to show that dim Ii,(m) is constant
in a neighborhood of m = 0. Moreover we can also assume, without loss of
generality, that y contains only one eigenvalue for m = 0 and that that
eigenvalue is A = 0. In this case, if (A, m) € = with A, inside y and m; — 0,
then we must have A; — 0 also, since 2 is closed. In particular for any ¢ > 0
we can find a neighborhood U of 0 such thatif m € U, (A, m) € =, and A is
inside v, then |A| < e.

By the first lemma in this section, we can choose ¢ > 0 and U as above so
that we also have

1f1l. S WE(m)Sf + Afll, + [p(m)fl 0z + l@(m)fl,s,
+([[m]],4,06 + Dilfllo

when [A| < e and m € U. Iterating this estimate j times we get
Jj—1
1712 S I[ECm) + ATl + 3 [pOm)[ ECm) + M1z

J—1

+ EOIQ(M)[E(M) + M1

+([[m]hsras* 1)§H[E(m) + M1l

Note that for all m in a neighborhood U of zero depending on j we have

2 W[ E(m) + AT} “fllo [ fllgj—2-

Let S be a closed subspace of C®(X; F) complementary to HJ(O), which
surely exists by the Hahn-Banach theorem since H’(O) is finite dimensional.
Lemma. We can find a neighborhood U of zero such that for all m € U;
Hi(m) n s = {0}.
Proof. Suppose not. Then we can find sequences m; - 0 and f, € H’(m)
N S with f # 0. Thus f, € Hi(m) N S for some A; inside y. As remarked
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earlier we must have A; — 0. Also
[E(m;) + NIf, =0,
p(m)[E(m) + NIT*, =0, forO<k<j-1,
q(m)[E(m) + N1, =0, forO<k <j—1
Therefore by the previous estimate

1l S ([[7]],0ree + DAL -2

Since f; # 0 we can normalize with || fll;_, = 1. Then ||f]|, < C so by
passing to a subsequence we may assume f;,— f for some f € C°(X; F).
Then by continuity

E(0Yf =0,
P(O)EOYf =0, for0<k <j~1,
g(0)E(0)*f =0, forO<k <j~1,
so f € H’(O) Also f, € S, and § is closed so f € §, and | fllyj—2 =1 so
[fllzj—o = 1. Thus f € Hf(O) N S and f 5 0, which contradicts the ch01ce of

Sasa closed complement.
Corollary. On the neighborhood U; of zero we have

dim H’(m) dim H’(O)

Now since U; depends on j we must argue carefully. We choose j with
J > dim A (0). Then forallm € U;

dim H’(m) < dim Aj(0) < dim H,(0) <.

As we argued before, this implies H’(m) H L(m) for all m € U,. Thus we
have found a neighborhood of zero on which dJm A ,(m) = dim H ,(0). This
proves the theorem.

4.9. Tame Fredholm theory

We give a brief sketch of how to generalize classical Fredholm theory to
the category of graded Fréchet spaces and smooth tame families of linear
maps. Let E, F, G, - - - denote graded Fréchet spaces. A family of linear
maps is a map

L:UCEXF-G

such that L(m)f is linear in f € F for each m € U C E. We take derivatives
of L only with respect to m (since L is linear in f, derivatives with respect to f
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produce no new information and mess up the notation). Thus
DL(m; n)f = liné[L(m + tn)f — L(m)f]/t.
1>
We say L is smooth if all the derivatives
DL:(UCE)XEX:---XEXF->G
exist and are continuous. Note that D*L is again a family of linear maps.

The family of linear maps L(m)f is tame if and only if for each m; € U we
can find a neighborhood U, and a number s such that for all #

NLC)f Ny S 1 fllnas + lmllpasll f-
The family L is a smooth tame family of linear maps if each D"L exists and is
tame. If L(m)f is any family of linear partial differential operators in f whose
coefficients are nonlinear partial differential operators in m, then L is a
smooth tame family of linear maps.

A linear map L: F — G is said to be compact if there is an open set in F
whose image under L is compact in G. This is equivalent to the following
condition. We say the norm | | is compact if there exists some open set which
has compact closure in the | |-topology. On a Montel space like C*(X; F) the
topology can be defined by a basis of compact norms. A linear map L:
F — G is compact if and only if there is a compact norm | | on G such that
for every norm || |{, on F we have || Lf]}, < [f]. Now we are ready for a new
definition.

Definition. The family of linear maps K(m)f is tamely compact if for
every mg, we can find a neighborhood U,, a number s and a compact norm | |
such that for every n

IK(m)fll, < (lmll e s + DIS)-
We say K is a smooth tamely compact family if K is smooth and all its
derivatives D”K are tamely compact.
Example. Let X be a compact manifold with a smooth volume dx, and let
k: X X R X X — R be a smooth kernel. Define the family of linear integral
operators

K: C=(X) x C2(X) — C=(X),
K(m)f(x) = fx k(x, m(x), V)A(») .

Then X is a smooth tamely compact family of linear maps.

Example. If G is finite dimensional, then every smooth family of linear
maps L: U € E X F— G is a smooth tamely compact family.

Theorem. The composition (either way) of a smooth tame family and a
smooth tamely compact family is a smooth tamely compact family.
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Proof. This follows immediately from the definition.

Theorem. Let w: U C E X F— F be a smooth tame family of linear
projections, so that w(m)m(m)f = a(m)f. Then « is a smooth tamely compact
family of linear maps if and only if each space Im =(m) is finite dimensional and
the dimension is constant.

Proof. First suppose that # is a smooth tamely compact family of linear
projections. Since

I7(m)fll, < (Imll e + DI,

we see that if f € Im 7(m) then
1l s (lmll s s + DIS)

Therefore the unit ball | f| < 1 is compact in Im #(m). This proves that each
space Im #(m) is finite dimensional. If f;, - - - , f5 are a basis for Im w(my),
then 7(my)f; = f;, so by continuity the #(m)f; are linearly independent for all
m in a neighborhood of m,. Thus dim Im #(m) > dim Im #(mg) forall min a
neighborhood of my. In the other direction, let S be a closed complement for
Im 7(mg), which exists by the Hahn-Banach theorem. We claim that #(m) N
S = {0} for all m in a neighborhood of my. This will show that dim Im =(m)
< dim Im 7(m,) for all m in a neighborhood of m,, and hence the dimension
of Im 7(m) is constant. If the above fails, we can find sequences m; — m; and
nonzero f; € Im m(m;) N S. We normalize with | f] = 1. Since m(m)f; = f, we
have

5l S (imyll s + DISL
so || fill, < C for all n. By passing to a subsequence we can assume f — f.
Then by continuity #(mg)f = f, so f € Im m(mg) N S; and |f| = 1 s0 f + 0.
This gives a contradiction.

In the other direction, suppose that 7 is a smooth tame family of projec-
tions whose images are finite dimensional and of constant dimension. For
simplicity take m, = 0. Write H(m) = Im m(m). Then if A(m) = w(0)m(m),

A: U C E X H(0) - H(0)
is a smooth family of linear automorphisms of a finite dimensional vector
space, and A(0) is the identity. Therefore for all m in a neighborhood of 0,
A(m) is invertible, and the family of inverses

A U C E X H(0) -» H(0)
defined by 47(m)g = f, if A(m)f = g, is also a smooth family of linear maps.
We can see this immediately by choosing a basis for H#(0) and observing that

the entries are smooth functions of m, and hence the determinant is a smooth
nonzero function of m whose inverse is therefore smooth. Moreover A~ maps
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into a finite dimensional space, so 47! is a smooth tamely compact family.
Now observe that if dim H(m) is constant, then when A(m) = #(Q)w(m) is
invertible we must have both #(0): H(m)— H(0) and #(m): H(m)— H(0)
invertible; and therefore
a(m) = a(m)A (m)m(0)yn(m).

Hence #(m) is a composition of smooth tame families with a smooth tamely
compact family, so #(m) is a smooth tamely compact family, as claimed.

Question. Are there any smooth tame families of projections whose image
spaces are finite dimensional but not of constant dimension?

Corollary. The projections =(m) of §8 are smooth tamely compact families of
linear maps. So are the projections p(m).

Definition. Let L(m)f be a smooth tame family of linear maps. We say
that L is a smooth tame Fredholm family if there exists another smooth tame
family M(m)g such that

K\(m)g = L(m)M(m)g — g, Ky(m)f = M(m)L(m)f — f
are smooth tamely compact families.
Example. From §8 we have

N(m)&(m)f + a(m)f = f,
&(m)N(m)(g, h, k) + p(m)(g, h, k) = (g, h, k).
Therefore & (m)f is a smooth tame Fredholm family.

Theorem. The composition of two smooth tame Fredholm families is a
smooth tame Fredholm family.

Proof. This follows directly from the definition.

Lemma. Let K: U C E X F— F be a smooth tamely compact family of
linear maps of F into itself, and suppose that for some my we have K(mgy)f = 0
Jor all f. Then for every k sufficiently large and for every ¢ > 0 we can find a
neighborhood Uy of my such that if m € Uy and f € F, then

I K(m)flle < &ll flle-

Proof. Choose k so large that the unit ball B = {|| f}|, < 1} has compact
closure in the topology of | |. For simplicity we can assume |f| < || f]|,
without loss of generality. Then for any n > 0 we can cover B by a finite
number of open sets {|f — f| <7} with f;, - - -, fy € B. Since KX is continu-
ous and K(my) = 0, the sets U; = {||K(m)f||, <=m} are all open in U C E;
hence so is their intersection Uy = U, N - - - N Uy. For any fwith || f]j, <1
we have | f — f;| < for some i, so for allm € U,

I K(m)fll < NK(m)flle + IK(m)(f = P«
<7+ C(llmllgss + Dm,
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using the fact that since X is tamely compact

IK(m)fll, < C(lmllgs, + DISI-
We further restrict U, so that ||m||,,, < 1. Then ||[K(m)f||, < Cn with a
constant C independent of n, when || f||, < 1. By linearity, ||K(m)f]|, <
Cnll fi|x for all k. Choose 7 so small that Cyy < e. Then || K(m)f]|, < &l|fl|.-
This proves the lemma.

Theorem. Let K: U C E X F— F be a smooth tamely compact family of
linear maps of F into itself with K(mg)f = 0. Let P(m)f = f + K(m)f, so that
P: U C E X F— F is a smooth tame family of linear maps. Then on some
neighborhood U, of my the maps P(m) are all invertible; and the family of
inverses P™': Uy C E X F— F defined by P*(m)g = f, if P(m)f =g, is a
smooth tame family.

Proof. By the previous lemma, if & is large and U, small enough we have

NK(m)filx < ellfles NPm)fll = 11f + K(m)f i > (1 = OIS,

When ¢ < 1 we see that P(m) is invertible for all m € U,. For by ordinary
Fredholm theory P(m) always has finite dimensional kernel and cokernel of
equal dimension; the estimate shows that P(m) is injective, and therefore it is
surjective also. Next

Ifll. < IPCfll, + IK(m)Sf L, I K(m)Sf)|, S (il e, + DISI-
If k is large enough, | f] < || f]|.. We saw before that || f||, < C||P(m)f]|, with
C=1/(1 — &). Thus
1Sl S 1P(m)f)|, + llm| o | P()f |
Letg = P(m)fsof= P(m)g. Then

1P (m)gll, Sl glls + llmll el 8-
This proves P! is tame.

We claim P! is also continuous. It is enough to show that it is sequentially
continuous. Let m; » m’ and g; — g’ be two converging sequences, and let
5= P'(m))g;. By the tame estimate we know at least that || fj|, < C for all n.
Let f/ = P~'(m")g’. Unless f; — f we can find a subsequence f; which avoids
a neighborhood of f'. Then yet another subsequence f; will have the property
of being Cauchy in the compact norm | |. For all »

Ifi — flla < llg — gll, + I1K(m)f — K(m)fl,.
Define
K(m)f = K(m)f — K(m')f.

Then K(m’)f = O for all f. By a previous lemma if # is large enough then for
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any ¢ > 0 we will have

1E(m)f], < el I,
for all m in a neighborhood of #2’. Thus
1R(m)S 1 < ell Sl
for all large j, since m; — m’. Write
K(m)f; — K(m)f, = K(m')(f; = f) + R(m)f, — R(m)f.
Then for all large  and j
W= flla < N& = glla + Clf; = fl + e(lfill, + 15l)-
Here C depends only on m/, and ¢ > O is arbitrdrily small if i, j are large
enough. Since g; — g’, we have ||g; — g|, — 0 for all n. Then | f;, — fll, =0
for all n also (recall f, is Cauchy in | [). Then f;— f” for some f”, and
P(m")f" = g’ by continuity. Thus f” = P~}(m’)g’ = f* which shows P~ is
continuous.

Now from general considerations [2, Theorem 5] it follows that P! is
smooth and all its derivatives are tame also.

Corollary. Ler K: U C E X F~> F be a smooth tamely compact family of
linear maps, and let P(m)f = f + K(m)f. Suppose P(my) is invertible. Then
P(m) is invertible for all m in a neighborhood U, of my, and the family of
inverses P~': Uy C E X F — F is a smooth tame family. Moreover P~'(m)f =
f+ L(m)f where L: Uy C E X F—> Fis a smooth tamely compact family.

Proof. Since P(my) is invertible, write P(mg)™' = I + L(myg). Then

[1+ K(mg)|[1+ L(mg)] =1, L(mg) =-K(mg) — K(mg)L(my).
Since K(my) is compact, so is L(mg). Now let P(m) = P(my)~'P(m). Then
P(m) = I + K(m) where

K(m) = L(my) + K(m) + L(my)K(m).
Therefore K is a smooth tamely compact family of linear maps with K(m,) =
0. By the previous theorem we can find a neighborhood U, of m, on which
the P(m) are all invertible, and the family of inverses P~'(m)f is a smooth
tame family of linear maps. Let

P~ (m)f = P~ (m)P(mo)™'f.
Since P(m) = P(my)P(m), we see that P(m) is invertible for all m in U, and
P(m)™! = P~'(m). Finally write
P Y(m) = I + L(m).
Then as before
L(m) = —K(m) — K(m)L(m),
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so L(m)f is a smooth tamely compact family of linear maps.

Corollary. Let L: U C E X F— G be a smooth tame Fredholm family of
linear maps. If L(mg) is invertible, then L(m) is invertible for all m in a
neighborhood U, of my, and the family of inverses L™': UyC E X G- Fisa
smooth tame family of linear maps.

Proof. We can find a smooth tame family M(m) such that L(m)M(m) =]
+ K(m) where K(m) is a smooth tamely compact family. Let M(m) M(m)
— LY (mg)K(mo). Then M is also a smooth tame family, and L(m)M(m) = I
+ K(m) where K(m) = K(m) — L(m)L™(mg)K(my) is also a smooth tamely
compact family with k(mo) = 0. By the previous theorem, P(m) = I + K(m)
is invertible for all m in a neighborhood U, of mg, and the family of inverses
P! is a smooth tame family. Then so is A?(m)P"(m)f, and
L(m)M(m)P~\(m)f = f so L(m) is invertible and L™\(m)f = M(m)P~\(m)f is
a smooth tame family.

Theorem. Let L: U C E X F— G be a smooth tame Fredholm family of
linear maps. Then the index

i(m) = dim Ker L(m) — codim Im L(m)
is constant.

Proof. Fixmy € U. Write £E= E'@® E” and F = F' ©@ F” such that E’
and F’ are finite dimensional and the composition

i L i}
EII £ El @ EII (mo) FI @ FII F FII

g o L(myg) o ig is an isomorphism. Let L(m) = @g o L(m) ¢ ig. Then L(m) is

also a smooth tame Fredholm family. For suppose that M(m)f is another

smooth tame family such that L(m)M(m)f — f = K,(m)f and M(m)L(m)f —

J = K,(f) are smooth tamely compact families. Let M(m) = 7g o M(m) ° iy.

Then ifwy = I — py and igwg = I — py where py and p} are the projections
on the finite dimensional spaces E’ and F’. We have

E(m)M(m) — I = K,(m) + nf = L(m) ° pf = M(m) © if,
M(m)L(m) — I = K,(m) + 7f o M(m)  p’> L(m) iz
Thus L is also a smooth tame Fredholm family. Moreover L(my) is invertible,

so L(m) is invertible for all m in a neighborhood U, of my. It follows easily
that i(m) = dim E’ — dim F’ is constant on U,

PART 5. ELLIPTIC COMPLEXES

5.1. Definition
Let X be a compact manifold with smooth boundary dX, and let £, F, G
be vector bundies over X. An elliptic complex of degree one consists of two
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linear partial differential operators 4 and B of degree 1 with B4 = 0:
C=(X; E) 5 @=(X; F) 5 C=(X; G)
such that for all nonzero real cotangent vectors ¢ the sequence of symbols

£) og(§
EQFY 6

is exact, i.e., Im 0,(%) = Ker o5(%).
We wish to construct a splitting of the complex; this means to find two
continuous linear maps K and L

= (X; E)%G“(X; F)%ew(x; G)

such that AKX + LB = I. This is equivalent to asserting (1) Im 4 = Ker B, (2)
Im B is closed (3) Ker A, Im 4 = Ker B, Im B are all split, i.e., are direct
summands. More generally we may have only that AK + LB+ H = I,
where H is a projection on a finite dimensional subspace representing the
cohomology group Ker B/Im 4.

Choose hermitian metrics {, > on E, F, G and a volume element &7 on X.
Form the inner product

KLey=[ [Se>av.

Let » be any nonzero normal cotangent vector field. There exists an adjoint
linear partial differential operator 4* such that

KAe, [ + Le, A*f) =0,
if o,(»)e = O or if 0,4.(»)f = O on 3X.

Since Im o,(£) = Ker 05(§) when £+ 0, and since the dimensions of
images and kernels are semi-continuous, one above and one below, it follows
that dim Im o,(§) = dim Ker ogx(£) is constant, and hence dim Ker o,(£) and
dim Im o4(%) are constant also; the same holds for the adjoints. Therefore
Ker 0,(») is a subbundle of E|0X. Let P be isomorphic to the quotient
bundle, and let a: E|dX — P be surjective with Ker a = Ker o,(»). We give P
the quotient hermitian metric; thus a: Im 6,(r)* — P is an isometry since
Im o,(»)* = Ker 0,(»)*. Define a*: F|3X — P by a* = ac,(»)*. Then a* is
surjective and Ker a* = Ker o,(»)*; also

(a*f, a*g) = {o,(»)*f, 0,(r)*8>, {ae, a*f) = e, 0,(»)*f).
Let dS be the volume on 3X with dV = dS A », and write

frgd = fa (S8 ds.
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By Green’s formula

KAe, f» + Ke, A*f)» = (ae, a*f)
for all e and f.
Similarly we have an adjoint operator B such that
KBf,g» + K, B*g)» =0

if o5(v)f = 0 or if 6z.(r)g = 0. Ker 0;.(¢) is a subbundle of G[0X. Let Q be
isomorphic to the quotient bundle, and let 5*: G|dX — Q be surjective with
Ker b* = Ker g5.(¥). We give Q the quotient hermitian metric; thus b*:
Im ogx(r) — Q is an isometry. Define b: F{0X — Q by b = b*og(»). Then b is
surjective and Ker & = Ker oz(»); also

Cbf, bg)> = {og(v)f, op(v)g>, <&f, b*g> =<ax(»)f, &7-

By Green’s formula

KBf, g» + K/, B*g)» = <(bf, b*g).

5.2. The associated elliptic boundary value problem

To each elliptic complex there is a natural way to associate a self-adjoint
elliptic boundary value problem (in the sense of 2.1). We choose metrics and
adjoints as before, and let

Ef = AA*f + B*Bf, onX,
pf = a*f, on dX,
af = b*Bf, on 3X.

Lemma. & = (E, p,q) is a self-adjoint elliptic boundary value problem.
Proof. First note that

0p() = 0,4(§)0,-(8) + 05:(§)0x(8),
0,4+(§) = 0,(§)*, and 05.(¢) = 05(§)*. Then |
(s, > = < (&), a4&)*f> + Cas(d)f, o5(8))-

Since the complex 4B is elliptic, Ker 0,(£)* N Ker a5(£) = {0} for all non-
zero real cotangent vectors & Thus

Cog(&)f, f> >0iff+0 and£#0.
Also o (§)* = 6z(§), so
Co()f. 8> = <[, 0:(8)g>.
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Next we have
Cog(0)f, 8> = <o,(»)*f, 0,4(v)*g> + <o5(¥)f, ox(¥)g>
= {a*f, a*g) + {bf, bg)
= (o,f, 0,8 + <,(»)f, 0,(»)&>
since g, = a* and o (») = b*ox(r) = b. Now o (9 = 0,(Ho,®)* +
05(§)*05(8), so
Dog(v; 1) = 6,(n)o,(»)* + o,(v)o,(n)* + o5(n)*05(¥) + 05(v)*o5(7).
Suppose o,f = 0 and g,g = 0. Then a*f = 0 and a*g = 0, s0 o,(»)*f = 0 and
o,(»)*g = 0. Therefore
(Dor(v; n)f, 8> = op(v)f, o5(n)g) + <o5(n)f, a5(v)g>-

Now b* is an isometry on Im o,(») and is zero on its orthogonal complement.
Thus

[, 8> =<b%f, b*g,
if f € Im ogx(») or g € Im o4(»). Therefore
Cop(v)f, op(n)g) = {b*op(v)f, b*os(n)g>,
Cap(n)f, o(v)g) = {b*ag(n)f, b*as(v)g>.
But ¢, (§) = b*05(f). Thus
(Dop(v; Mf, g = o ,(n)f, o,(n)g)> + o, (n)f, o,(¥)g>-

Therefore & = (E, p, q) satisfies all the conditions (1)-(5) of §2.1. This is not
surprising, for conditions (1)-(5) are just those required to integrate by parts
to transform (Ef, g into an essentially hermitian symmetric bilinear form.
But if gf = b*Bf = 0 and pg = a*g = 0, then

KEf, g)» = KAA4%f, g) + KB*Bg, g = 4™/, A*g) + KBf, BgH,
which is (truly) hermitian symmetric. For general f and g the boundary
integrals are

Co,(v)4*f, 8> = {ad*f, a*g), {ox(v)*Bf, g> = (b*Bf, bg).
Thus the adjoint boundary conditions are
p'f=ad*f, qg=bg.
Recall that H, = Ker & is the set
Hy= {h: AA*h + B*Bh =0, a*h = 0, b*Bh = 0}.
Lemma.
Hy= {h: A*h = 0,a*h = 0, Bh = 0}.
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Proof. 1f h € Hy, then
lA*h|* + || Bh|* = A*h, A*h» + (Bh, Bh)) = {AA*h + B*Bh, b)) = 0,
so A*h = 0 and Bh = 0.

53. Splitting the complex

The importance of the associated self-adjoint elliptic boundary value prob-
lem is revealed by the next result.

Splitting theorem. Suppose that the associated self-adjoint elliptic boundary
value problem

&f = (AA*f + B*Bf, a*f, b*Bf)
is an isomorphism. Then the complex AB splits. The splitting is given by two
maps K and L:
Kf=A*6"'(£,0,0), Lg=&"(B*g, 0,b*g), AK+ LB = 1.

Proof. We begin with the following observation.

Lemma. Ifb*g =0, thena*B*g = 0.

Proof. 1f b*g = 0, then for all f

KB*g, Af > = g, BAf) = 0= KA*B*g, f»,

so we must have a*B*g = (.

Now let £ = &7!(, 0, 0). Then Kf = A*h. From the definition of &

AA*h + B*Bh = f, onX,
a*h =0, onodX,
b*Bh =0, on 9X.
Therefore BB* Bh = Bf. Also by the previous Lemma we have a*B*Bh = 0.
Therefore
AA*(B*Bh) + B*B(B*Bh) = B*Bf, onX,
a*(B*Bh) =0, on 29X,
b*B(B*Bh) = b*Bf, ondX.
This shows that
B*Bh = &(B*Bf, 0, b*Bf) = LBf.
Therefore AKf + LBf = for AK + LB = I.

5.4. Nonzero cohomology
We say that the complex AB satisfies a persuasive estimate (or subelliptic
estimate) if
/18 S I1A*S1i5 + UBfUIE + 1l when a*f = 0.
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Since Ef, £y = ||A*f|i2 + ||Bf|? when a*f=0 and 5*Bf =0, this is
clearly equivalent to saying that the associated self-adjoint elliptic boundary
value problem &f = (4A4*f+ B*Bf, a*f, b* Bf) satisfies a persuasive esti-
mate:

|16 < ReEf, f» + |1 fll; whena*f=0and 5*Bf = 0.

Let y be a curve in the complex plane avoiding the eigenvalues of &. Then
we have the operators N and o of §3.8 and the projections = and p. Recall
that we defined &, = & + A9 and

H, = Ker &, = {(h: Eh + M = 0,ph = 0, gh = 0},
I;A = the smallest subspace such that
Eh + M € Hy,ph=0,gh = 0=h € H,.
We say that & is totally self-adjoint (and not just on the symbol level) if
KEf, g» =K/f Eg»
whenpf =0, ¢9f = 0,pg = 0,9g = 0.

Lemma. Suppose & is totally self-adjoint and satisfies a persuasive estimate.
Then all the eigenvalues are real. Moreover H, = H, for each A, the projection
@ Is an orthogonal projection and Im ¢ = Im 7.

Proof. First we claim that

$feIm &, & f € H-.

For if &g = 9f, then Eg+ Ag=f, pg =0 and gg = 0. If h € H,, then
Eh + Nh =0, ph = 0, gh = 0. Since E is totally self-adjoint,

Kfihy = KEg + Ag, hy = g, Eh + M) = 0.
Therefore f € Hy-. But we know that dim Ker &, = codim Im &,. There-
fore there can be no more relations, so the reverse implication holds also.
Next we claim that

Eh+ M €EH, Ph=0, gh=0=h€E H,.

For given any f € H+, we can find g with Eg + Ag = f, pg = 0, gg = 0 by
the preceding argument. Moreover we can modify g by an arbitrary element
in Ker &, = H,, so we may assume g € Hy". Then, if Eh + M € H,,
ph =0, gh = 0, we have

Kh, f» = &Kh, Eg + Ag» = KEh + Mi;g)» = 0.
Thus AL H,*, so k € H,. But this shows H, has the property for which 1?,\ is
minimal; hence H, = H,.

Now we must show that « is an orthogonal projection and Im 7 = Im .
Any closed curve y contains only finitely many eigenvalues. Therefore it is
sufficient to prove the result when y contains only one eigenvalue A (since the
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general case is just a sum of such special cases), and we may also assume
A = 0 (by translation). Then Im = = H,. Let f € Ker 7 so that zf = 0.

Since N& + 7 =1 we have Nf=f. Then If= IN&f= &ENYSf, so
9f € Im &,. By the above §f € Im &, = f € Hg". Therefore Ker 7 LIm 7.
This shows 7 is an orthogonal projection.

We saw in §3.8 that po = 0 and go = 0, so a*gs = 0 and 6*Bo = 0 We
claim that also Eg = 0. For N&o = 0, so

Im &0 C Ker N =Im p = $(Im 7).
But
&0 = (FEo, p6, go) = (Ec,0,0) = $Eo,
so Im Eo C Im #. Hence for any f we have Eof € H, paf = 0, gof = 0. Thus
of € ﬁo = Hj, so Eaf = 0. We also see that Ime CIm#, so Imo=Im«
because 7 = o¢. This proves the lemma.

Lemma.

a*6 =0, b*Bo =0, a*N(g,h,k)=h, b*BN(g, h k) =k.

Proof. We saw in §3.8 that

po=0, go=0, pN(g,h,k)="h, gN(g, h k) =k.
But now p = a* and ¢ = b*B. )
Corollary.
a*N$f=0, b*BNSf=0.

The operator & associated to an elliptic complex AB is always totally
self-adjoint, so the preceding applies. Moreover we have the following result.

Lemma. Iff € Im =, then AA*f € Im 7 and B*Bf € Im .

Proof. Recall that if b*g = 0, then ¢*B*g = 0. It is sufficient to prove the
lemma in the case where y contains only one eigenvalue A, in which case # is
orthogonal projection on

H, = {h: AA*h + B*Bh + M = 0,a*h = 0, b*Bh = 0}.
Suppose h € H,. Then a*4AA*h = a*(Ar — B*Bh) = Aa*h — a*B*Bh, but
a*h = 0 and &* Bh = 0 which by the previous argument implies a* B* Bh = 0.
Thus a*A4*h = 0. Also b* BAA*h = 0. Moreover
(AA* + B*B + AI)AA*h = AA*(AA* + B*B + A )h = 0.
This proves h € H, = AA*h € H,. Thus (I — #)AA*7 = 0. Likewise
a*B*Bh = 0 (as shown already) and 6*BB*Bh = b*B(Ah — AA*h) = Ab*Bh

= 0. (AA* + B*B + AI)B*Bh = B*B(4AA* + B*B + A)h =0. Thus h &
H, = B*Bh € H,,so(l — m)B*Bw = 0 as well. This proves the lemma.

Lemma. If7f = Qanda*f =0, then wAA*f = 0.

Proof. Consider any h € Im #. Since a*7 = 0 we have a*h = g*7h = 0.
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Therefore
KAA*f, Yy = KA*f, A*h) = Kf, AA*hD.

Since A € Im 7, we have A4*h € Im 7 by the previous lemma. If #f = 0,
then fLIm 7, so f, AA*h» = 0. Thus K44*f,h» =0 for all A € Im #.
This shows that A4A*f L Im 7=, so wAA*f = 0.

Corollary. 7AA*N 3f = 0 for all f.

Proof. N =0 so aNJf= 0. Also pN3f= 0. Thus a*N4f = 0. Then
7AA*N §f = 0 by the lemma.

Lemma. Suppose O lies inside y. Then Ef € Im 7, a*f = 0, b*Bf = 0= f
€ Im 7.

Proof. LetO,A,, - - -, Ay be the eigenvalues lying inside y. Then

Imnz=H,® Hk.® ce Hy
Therefore we can write
EF =hy+ hy + - - - +hy,

where hy € Hy, hy € Hy, - - -, hy € H, . Then a*hh; =0 and b*Bh; = 0
for 0 <j <N. Also Ehy =0 and Eh = Ah for 1 <j<N. Let f=f~—
h /A — -+ —hy/Ay. Then Ef= Ef— h;~ -+ —hy = hyand a*f =0,

b*Bf = 0. This implies that $4, € Im & which by a previous argument
implies h, € Hg-. But hy € H,, s0 hy = 0. Then Ef = 0,a*f = 0, b*Bf = 0, so
f € Hy. Thus

f=f+h/A\+ - +hy/Ay EIm 7,

since f € H, and h/XN € Hy.
Theorem. Let AB be an elliptic complex which satisfies a persuasive esti-
mate

|G 14*f1i3 + IIBfIG + ILfl§ whena*f=0.
Form the associated self-adjoint elliptic boundary value problem
&f = (44*f + B*Bf, a*f, b*Bf).

Let v be any closed curve in the complex plane containing O and avoiding the
eigenvalues of & . Form the associated gperators

RN =[& +A$]7,
N=LR(A)—‘§\—>\, o=j;R(}\)dX, 7=09, p=Yo.

Then 7 is the orthogonal projection onto the finite dimensional subspace spanned
by the eigenvectors of & with eigenvalues insides .
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Define operators K and L by
Kf = A*N(£,0,0), Lg= N(B*g, 0, b*g).
Then AK + LB+ w=1. Also Km = 0and 7L = (.

Proof. Since N4m =0 we have Kr =0, and since #N =0 we have
7L = 0. Let

h= N(f,0,0) = N4f.
Then Kf = A*h and AKf = AA*h. We know that &N + Y6 = I. Therefore
&h + 0% = (4,0, 0).
Now $6%f = $af = (uf, 0, 0). Thus
AA*h + B*Bh + of = f, on X,
a*h =0, onodX,
b*Bh =0, on dX.
Recall that b*g = 0 = a*B*g = 0. Thus a*B*Bh = 0. By recent lemmas
(1 —7)B*Br =0, b*Br =0,
s0 B*Bwf = wB*Bwnf and b*Brf = 0. Then
AA*(B* Bh) + B*B(B*Bh) = B*Bf — wB*Bnf, onX.
a*(B*Bh) =0, on 3X,
b*B(B*Bh) = b*Bf, on dX.
Next let
k = LBf = N(B*Bf, 0, b*Bf).
Again since &N + Yo = I we have
&k + Yol = (B*Bf, 0, b* Bf)
with / = (B*Bf, 0, b* Bf). Thus
' AA*k + B*Bk + ol = B*Bf, onX,
a*k =0, on dX,
b*Bk = b*Bf, on dX.
Recall that Im ¢ = Im 7. Put
m = B*Bh — k.
Then from these equations and the previous set we see that
Emelmaw, a*m=0, b*Bm=0.

By a recent lemma we conclude that m € Im #. Then we have m = 7m and
B*Bh = k + wm. From AA*h + B*Bh + =f = f we conclude

AKf+ LBf + mm + of = f.
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Now we claim that 7AKf = 0. For h = NJf, and a recent lemma implies
that #4A*h = 0. Thus #4Kf = 0. Now we see that #m + «of = af soam = 0.
Then we have AKf + LBf = f, which proves the theorem.

5.5. Families of elliptic complexes
A family of elliptic complexes consists of two partial differential operators
A(m)f and B(m)g
AU € C*(X; M) X C°(X; E) - C°(X; F),
B: U C C°(X; M) X C°(X; F) » C=(X; G),
nonlinear of some degree r in m and linear of degree 1 in f and g, such that
B(m)A(m)f = 0 and the sequence of symbols
Tamy(§) _ Oaemy(§)
E G

- F -

is exact for each m € U and each nonzero real cotangent vector £.

We choose hermitian metrics {, >,, on the bundles E, F, G and a volume
element dV,, on X, all of which may depend smoothly on m and its
derivatives up to degree r, and form the adjoint operators A*(m) and B*(m).
We also choose bundles 2 and Q with hermitian metrics {, >,, and surjective
bundles maps a*(m): F|dX — P and b*(m): G|oX — Q representing the
boundary conditions as before, all of which depend smoothly on m and its
derivatives up to degree r. We then form the associated family of self-adjoint
elliptic boundary value problems

&(m)f = (A(m)4*(m)f + B*(m)B(m)f, a*(m)f, b*(m)B(m)f).
We say that the complex 4B satisfies a uniform persuasive estimate if
|f13 S 14*(m)f 15 + 11BOm)f 13 + 1A113
when a*(m)f = 0 with a constant independent of m € U. In this case the
eigenspaces
Hy(m) = {f: E(m)f + M = 0,p(m)f = 0, g(m)f = 0}
are all finite dimensional. Note that
Hy(m) = {h: A*(m)h = 0, a*(m)h = 0, B(m)h = 0}.

Theorem. Suppose that the family of elliptic complexes AB satisfies a
uniform persuasive estimate, and that Hy(0) = 0. Then we can find a smaller
neighborhood U of 0 and smooth tame families of linear maps K(m)f and L(m)f
which split the complex, i.e.,

A(m)K(m)f + L(m)B(m)f = f.
Proof. By the hypotheses, & (m)f is invertible for all m in a neighborhood
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U of 0, and the family of inverses &~!(m)f is a smooth tame family of linear
maps. We apply the previous construction uniformly in m. Thus

K(m)f = 4*(m)&~(m)(f, 0, 0),

L(m)g = &~'(m)(B*(m)g, 0, b*(m)g).
Since a composition of smooth tame maps is a smooth tame map, it follows
that K and L are smooth tame maps. That AK + LB = I follows from the
previous argument.

In case Hy(0) # O we still have an approximate splitting.

Theorem. Let AB be a family of elliptic complexes which satisfies a uniform
Dpersuasive estimate. Choose a path vy which contains O but no other eigenvalue
of &(0). Let N(m) and =n(m) be the families of operators obtained by integrating
around y. Then Im #(0) = Hy(0) while Im w(m) = Z H,(m) for A inside vy.
Define

K(m)f = A*(m)N(m)(/, 0, 0),
L(m)g = N(m)(B*(m)g, 0, b*(m)g).
Then K and L are smooth tame families of linear maps and
A(m)K(m)f + L(m)B(m)f + a(m)f = f.

Proof. K and L are smooth tame maps since N and = are. The above

identity follows as before.
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